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What is IDA-PBC, why is it useful & what are limitations?
• Interconnection damping assignment passivity-based control (IDA-PBC)

– Ortega et. all 2002, Ramirez et. all 2009, Johnsen & Allgower 2007.
• Why is it useful?

– Allows for low-complexity automated controller design for certain 
classes of underactuated and nonminimum-phase systems.

– Results in explicit gain limits which can be enforced at run-time in 
order to restrict the operator interface to prevent entry of  potentially 
destabilizing controller gain values.

– Can explicitly determine feasible set-point constraints to in order to 
avoid potentially uncontrollable operating conditions.

– Allows for integrators to be introduced in order to compensate for 
model uncertainty and actuator degradation.

• Limitations
– Anti-windup control needs further study, we present a preliminary 

solution which relies on a linear systems assumptions; however, our 
solution works reasonably well for control of coupled-tank processes.

– Theory is based on continuous-time controller assumptions, we 
used bilinear-transform to approximate integrators in order to achieve 
reasonably low sampling rates.

– Assertions were made by Johnsen & Allgower that techniques could 
be applied to nonminimum phase systems; however, their controller 
constraints for a nonminimum four tank system were incorrect.



Problem Setup: Dynamics

Variable Domain Description
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Problem Setup: Constraints
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Control: IDA-PBC Procedure 
1. Augment the state-space description with p additional integrators
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Control: IDA-PBC Procedure
3. Find conditions on the coefficients ki and kI to render Qd negative 
definite.  There are multiple ways to satisfy this.  We apply 
Sylvester’s criterion on the negative Hermitian of Qd :
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Control: IDA-PBC Procedure
5. Solve for the desired Hamiltonian  Hd and pos. def. symmetric 
matrix Q using the following form:
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Control: IDA-PBC Procedure
6. Determine the control law:
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Control: Integrator Anti-Windup Compensator
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Control: DT-Implementation
Discrete-time implementation of the full controller with anti-windup:
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Symbolic Analysis using MuPAD
1. Create a matrix Qd with symbolic variable entries.  Create an 

expression for the determinant of each leading principal submatrix |–
He{Qd}k| for k=1…n+p. Use solve() to find the control coefficient 
bounds subject to the constraints |–He{Qd}k|>0.

2. Finding the matrix P requires several steps:
1. Use linalg::nullspace() with g(x)T, then concatenate the resulting 

vectors to find g⊥(x).
2. Compute g† using the Moore-Penrose left pseudoinverse

g†(x)=(g(x)Tg(x))-1g(x)T .
3. Form g⊥(x)Qd and g†(x)Qd . Use linalg::nullspace() to get Pnull (as 

above), and then P=-Pnull(g†(x)Qd Pnull)-1 .



Two Tank Process
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Two Tank Process
Two tank dynamics
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Two Tank Process
Constant matrix
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Two Tank Process Step Response
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Two Tank Process Step Response
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Four Tank Process
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Four Tank Process
Dynamics
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Four Tank Process
Hamiltonian
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Four Tank Process
Coefficient bounds
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Four Tank Process
Set point constraints for minimum-phase system
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Four Tank Process Step Response (min-phase)
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Four Tank Process Step Response (min-phase)
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Four Tank Process Step Response (nonmin-phase)

1 0.43γ =

2 0.34γ =

0.8uk =

0.1 ssT =

0 500 1000 1500 2000 2500 3000 3500 4000

8
10
12
14
16
18

t (s)

x 1 (c
m

)

 

 

0 500 1000 1500 2000 2500 3000 3500 4000

0

5

10

15

20

25

u 
(m

l/s
)

 

 

x1
*

x1 (DC)

x1 (IDA-PBC)

u1 (DC)

u1 (IDA-PBC)

u1
*  (IDA-PBC)



Four Tank Process Step Response (nonmin-phase)
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Conclusions
• Once correct constraints for the control gains for the control of the 

nonminimum phase system were determined the IDA-PBC was 
superior to the decentralized controller option.

• We provided a feasible integrator antiwindup compensator to improve 
system resilience for the two-tank and four-tank systems studied.

• The explicit solution for control trajectories under ideal model 
conditions can provide both visual feedback to the operator indicating 
drifts from these ideal conditions and can be potentially used to 
determine system faults.

• The four tank process appears to be sufficiently rich to integrate with 
various digital control infrastructures in order to evaluate various red-
team/ blue-team scenarios.

• Further work needs to be taken to address integrator antiwindup
compensator for nonlinear systems and to attempt more explicit 
guarantees for discrete-time control systems which rely on IDA-PBC 
techniques. 
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