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Sensors In Control Systems

Uncertain Environments

Sensors Enrich System’s Knowledge
Limitations of Single Sensor

Multiple Sensors:

« Complementary, Redundant,
Diverse, Timely Information

Sensor Fusion: The theory, techniques
and tools which are used for integrating
data from multiple sensory sources, or
iInformation generated from any source
of data into a common, coherent
representational format
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Multi-Sensor Fusion: Commercial
Appllcatlons

« Biomedical Applications ;

Diagnostic assistance, fusion
of medical images

Source:
http://www.ablesw.com/3d-
doctor/regist.html

 Health Monitoring

Smart Structures, Machines,
Diagnosis, Prognosis

« Environment Monitoring

Habitat Monitoring, Traffic
Monitoring

Industrial Applications

Robotics, Manufacturing
Automation
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Multi-Sensor Fusion: Military

Applications Torr—

« Battlefield Operations “paaruson. [

Information Management Awareness

Detection, Tracking, Identifying and ! Knowiedge
Locatlng Targets Vastly Improved Battlespace

Awareness
Shared Battlespace
Awareness

e Sltuation Awareness

Web of Human and Non-Human
Sources, Information Superiority

Virtual Collaborations
Virtual Organizations
Substitution of Info for People
and Material
Self-Synchronizing Forces

. v
* Network Centric Warfare noresses Temp of opratons
Linkage between Sensors, Decision | té’&“i;?céiiibt
Makers and Armaments Effectiveness
Execution
%mﬁn Source: http:/www.dod.mil/
— ada gy e ( (= ene nii/NCW/ncw_0801.pdf
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Issues and Challenges

e Sensor Uncertainty: Noise,
Ambiguity, Spuriousness
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e Sensor Selection: Optimization
of Resources

« Complexity and Synergism: @&t/
erous sSources
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Sensor Fusion Algorithms

1. Durrant-Whyte, 2006
2. Murphy, 1998

3. Bar-Shalom, 1993,
4. McKendall and Mintz, 1992 *
Sasiadek, 2002
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Data Fusion Applied to Self-
Localization in Multi-Robot Experiments

o Self — localization
— Where am |? Obtain one’s own positional estimate
» Important for robot control and navigation algorithms
e Multi-robot scenarios
— Where am 1?
— Where are others?
— Needed for control and coordination algorithms
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Localization methods

o Self-localization

— Obtaining positional P
estimate (X’ Y, e) y / L+e
— Approaches: GPS, Radio — S

acoustic ranging,
centralized sensing system
such as vision

e Centralized vision system

— Uses patterns
* Provides both state and IDs

— Not scalable

— Practical implementation
TR ARTAG Marker /
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Localization Methods

Patiern Mon-Pattern
Position Direct measurement Direct measurement
(x, ¥k (Patie m recognition) ( Blod ex traction )
Beanng Direct measurement Estimation
(&) (Patie m recognition) ( Kalman flter
Direct measurement Data Association
ICx:
{Patiem recognition) (in distributed manner
Computation
Centralized Diece nitralized
e
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Self-localization in Single Robot
Scenario

1 0 0
State of the robot: .
E k F 010
} 0o o1
T, x cos(fy_, I
: . Xip = f(Xp . U, W) Bea= | T, x sin(fy,) 0
Dynamics Equation: T
FXo ot By Uyt W | ! I
1 00
H
_ _ L | n]
Observation equation:
I
Sy =hX, VI=HX,+V N [h }
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Extended Kalman Filter for the
Estimation

ioti : Update Equations:
Prediction Equations: P 9

Ky = Pup H (HPyp HT + R)!

Xgg—1 = FAX By U

k—1]k—1

Xew = Xipy + Ke(Ze — HX e )

Pk = A FPe_i 1-'1..":. G Peg = (1 — K H ) Py

where Z,-HX,: , Is called measurement reidual, A, is Jacobian matrix of
partial derivative of f with respect to X

1 0 —uyxT, % sin(f_,)
g o I
Ajij) = 5 ( X1, U D) Ay 0 1 v xT,xcos(fl1)
AX;
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Single Robot Experiment

o

e Robot motion is random

e Bearing estimation converges
quickly

Error (degree)

Error (degree)

Measurement Residual
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Multi-robot scenario

All robots look alike to a vision camera

Camera provides a bunch of points
corresponding to positions, no IDs

Hence, the challenge is two stage: i)
data identification and ii) estimation
Solution:

— First identify the data, i.e., tag them

— Then use the EKF based method for
estimation

Turns out, its not so easy
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Multi-Robot Scenario

 |dentification of data requires a good estimate of bearing
« Estimation of bearing requires identified data

Case 1- Robot 1 has a ~ . Predicted position at
correct estimation on its ~# time step k+1

headmg ..r:-.’leas urement at ti!:r_'.-.zj-step k+1
._I_\.::'.'{-___
[ -'—"";'_/_
Track 1
Track 2
frobot 1) )

=~/ Then it will successfully identify
Measurement at time step k  frack 1 as its own track

Case 2 Robot 1 has an
incorrect estimationonits ...

heading £ (>
.'-I_ h | "', -__I - \ -',
)

Trackl 0 % mmmewenmm g e ’ -

{robot 1) Track 2

(robot 2)

Then it will choose track 2 as its own track
which actually belongs fo robot 2

UNIVERSITY OF

Cincinnati



Proposed Approach

* Generate all potential tracks from the data

 |dentify the robot’s own track from among these
candidates

* Once the track is identified, associate the incoming data
In a step-wise basis.
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Identify its own track (by comparing

Generate all potential tracks .
P Measurement Residual).

Initial data received in one robot after .
(Nearest Neighbor).

150 timestep
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Proposed Approach

« Generation of all potential tracks:
— Nearest neighbor algorithm  corretation(z,.z; 1) = || — Zi ||

 |dentification of the robot’s own track:
— Use a robot’s control input as a unigue information
— For each potential track calculate average measurement residual
e =] Z4 - HXL, , |
e Data association and state estimation:
— Once track is identified, state estimation error converges

— Data association for future measurements can be carried out in
stepwise fashion.
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Proposed Approach

Repeat for T steps

)
Measure NM Generate all Run EKF on I
) each track Calculate €; on
ment — potential
each track
Data tracks
N
Update estimation in EKF
Compare 4
Associate to measurement Keep the
residual v P . Calculate E' for
the correct track with
.. . each track
measurement minimum g
(N
\
Measurement
Data

UNIVERSITY OF

Cincinnati




Experimental Results
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Residual Residual Residual

Residual

Results: Measurement
Residuals

Track 1

0 5 10 15 20 25 30 35 40 45 50
Time Steps

Robot 1
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Residual Residual Residual

Residual

Results: Measurement
Residuals

Track 1

0 5 10 15 20 25 30 35 40 45 50
Time Steps

Robot 2
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Residual Residual Residual

Residual

Results: Measurement
Residuals
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Results: Measurement
Residuals
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Summary

* Implemented self-localization technique for
multi-robot experimental testbeds based
on data fusion

e The technigue fuses control signals with
measurements to obtain a metric called
measurement residual for identification

* Eliminates traditional use of patterns to
carry out self-locations
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