Mathematical Theory of Rational Behavior

and Potential Applications
to Resilient Monitoring/Control

Semyon M. Meerkov

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Ml 48109-2122

3'd International Symposium on Resilient Control Systems

Idaho Falls, Idaho
August 10-12, 2010




ﬁ MOTIVATION

= Bees caste regulation process:
= Mbeesin S castes
= W) is fraction of beesincastei,1=1,..., S
= Remove on the castes (experimentally, foragers)

= In a short time, bees re-distribute themselves
among the castes so that 1{i)’'s remain the same

= Questions:
= How do the bees monitor the “plant” (family)?

= How do they control the plant (determine the
optimal distribution of bees among castes and
maintain it)?



First goal: Develop a theory that could explain (at least,
hypothetically) this phenomenon

Second goal: Apply this theory to resilient monitoring
and control of industrial plants

The first goal has been, to a certain degree,
accomplished in S.M. Meerkov, “Mathematical Theory of
Rational Behavior”, Mathematical Biosciences, 1979

The second is being pursued today in a recently
initiated resilient monitoring project with INL (Dr.
Garcia)

The purpose of this talk to overview TRB and illustrate

it by an application in a traffic control problem
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1. MODELING AND ANALYSIS OF
i INDIVIDUAL RATIONAL BEHAVIOR

1.1 Rational Behavior

= Behavior — a sequence of decisions in time, i.e., a
dynamical system in the decision space X:

Xgo(x),N (X09t09t)9
p(X)>0,Vxe X,Ne{l,2,...}.

X XOf‘L/L/




= Rational behavior — the behavior X (Xg, Ty, 1),
_ AT ASAERE
which satisfies the following axioms:

= Ergodicity:

VX,,t,, VB < X, uB > 0, It'such that
Xgo(x),N (X09t09t') B

Xo» To




= Selectivity or rationality:
VX,,t,, VX, X, € Xand B,,B, X, uB, >0,B, "B, =¢

B,

> 11t p(X;) < @(X,).

B
L >oas N — oo.

Moreover,
BZ

= @(X) — penalty function at decision x
= N — measure of rationality



1.2 Examples of Rational Behavior
1.2.1 Natural systems

= Bees in foraging behavior

X O O ... O

5% 10% 70%
= Mice in feeding behavior

X| x x X X X

= Dog in the circle experiment
“O %)

= Workers in production (Safelite Glass, Lincoln Electric)

ISERS




ﬁ 1.2.2 Mathematical systems

= Ring element

: X =[0,1) o(x)]

X=p"({x}), x(0)=0.
= Ergodicity takes place

= Rationality: 0 " 1
- N
T(X) ~ 0 P(X,)
T(X,) _¢(X1)_

= Additional property:

R |
Iim —
N —o0 TN 0

TN * * .
Xy@)=X, X =arg 1r[%)fl] o(X).



+

= lllustration:

P(X)

Tt
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= A search algorithm t o(x)

X =R \/\

p(X)>1L,VxeR

X

P(X) = Ce_(/’N(X), VxeR
N —o0

p(x1) :ecoN(Xz)—coN(Xl) 3 0

p(X,)
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2. MODELING AND ANALYSIS OF
ﬁ GROUP RATIONAL BEHAVIOR

2.1 Groups of Rational Individuals

= Group — a set of M > 1 rational individuals
interacting through their penalty functions:

O =@, (X Xinee s Xy ), 1=1,0..,M
= Group state space:
Xe X =X, xX,x---x X,

= Sequential algorithm of interaction:

@. = @, (X, =const,...,X. = var,...,X,, =const), 1=1,...
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ﬁ 2.2 Homogeneous Fractional Interaction

= M individuals, X=X, Vi

X Xl X2

= Assume that at t,:
m(t,) im X,,

M —m(t,) in X,,

v(t,) = ml\(;())'




+

= Homogeneous Fractional Interaction — an
interaction defined by the group penalty function:

f(v)>0, vel0,1]

i) |

(I r




+

= Group penalty function defines the penalty function
of each individual as follows:

= For Xi(to)e Xl’ 2 (V)
fv), ifxeX,
g”‘zif(v—ﬁ), if X € X,.

= For X (t,) e X,,

4 1 .
f(V‘l‘M), 1f Xi S Xl’
fv), ifxeX,

@; =1




= Interpretation
= Beehive food distribution

= Corporation-wide bonuses

= Uniform wealth distribution

s Desirable state
vV =are inf f(v
S ve[0,1] ()

s Question: )
v(t) > Vv ?
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| 2.3 Inhomogeneous Fractional Interaction

= Mindividuals, X;=X, Vi

X

X,

X

= Inhomogeneous Fractional Interaction — an interaction
defined by two subgroup penalty functions

f.(v)>0, f,(v)>0, ve[0,]
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= Penalty for each individual are defined as follows:

= For

@i =1

Xi (tO) < X19

f(v), ifxeX,

= For

S

1 .
\fz(v—ﬁ), if X, € X,.

Xi (tO) < X27

: .
fl(v+ﬁ) if X, € X,,

f,(v) ifx eX,.
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= Interpretation
= Differentiated corporate bonuses system
= Non-uniform wealth distribution

= Desirable state: Nash equilibrium

*

v =arg[f,(v)=f,(v)]

s Question: .
v(t) > v ?
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+

2.4 Properties of Group Behavior under
Homogeneous Fractional Interaction

= Theorem: Under the homogeneous fractional

interaction, the following effect of “critical mass”
takes place: 3 C> 0, such that

p
v(t)—> v if lim ﬁZC
N,M—)ooM
P .~ .. N
v(t)—>051f Iim —=0.
N,l\/l—)ooM

= v=0.5 implies the state of maximum entropy — the

group behaves like a statistical mechanical gas (no
rationality)
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= Empirical observations

= Beehive: when M is sufficiently small, the caste regulation
process takes place; when M becomes large, the family
splits

= Abnormal behavior of unusually large groups of animals
(locust, deers, etc.)

= Pay-for-group-performance: cooperate-wide bonuses, BP —
Prudhoe Bay vs. Anchorage

21



Inhomogeneous Fractional Interactions

| 2.5 Properties of Group Behavior under

= Assume 3 unique v* such that f,(v") =f,(v'") and
f,0v" —=A)> f (v —A),
0" +A)< f,(v7 +A),
0<A<<lI.

= Theorem: Under the inhomogeneous fractional

interaction, no effect of “critical mass” takes place.

Specifically, 3 N* such that vN > N*

p sk
v(it)->v forVM.
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SYSTEM (Joint work with UM undergraduate Leeann Fu)

i?). APPLICATION TO PAY AND INCENTIVE

3.1 Scenario

A
. X: :
Penalty function: travel timet, =t, (1+ K 1—'), 1=1, 2,
1 _ XI
n. :
X; =— — thelevel of road congestion,
C.

C, — road capacity,
n. — number of vehicleson the road,

K €(0,1] — road condition factor.
23
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= Problem 1: Assuming that the performance index is
time to travel and each driver exhibits rational
behavior, investigate the steady state distribution of
vehicles among Roads 1 and 2

= Problem 2: Assuming that the drivers are rational and
given a fixed amount of goods to transport from A to
B, analyze the total time necessary to transport the
goods under different pay systems:
= Pay-for-individual-performance
=« Pay-for-group-performance
= Pay-for-time
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3.2 Parameters Selected

= M=6
= N=var
= Road systems
= System 1:
t, =2.05, K=0.7, c=9
t, =24, K=1.0, c=8
= System 2:

t, =2.1, K=0.68, c=10
t, =3, K=0.95, c=9
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F(v)

3.3 Problem 1

= Penalty functions

= System 1:
0..
9..
8..
7-
5 |
5
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3 |
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;|
Q +— + b o
= = 8 2 5 8
o o o o
v
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s Results

= System 1:
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= System 2:

0.8

0.6

State

0.4
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3.4 Problem 2

= Penalty functions
= System 1:

User eq. = System eq.:

* 3
vV =V

1 -

F(v)
O = N W & O N 00w o
— A,

0.17
0.33
0.5 1
0.67
0.83

F(v)

10 7
o] t i } —
o] M~ [+ ] w M~ ™M -
- 92 o @9 %
o o o (=)
v
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= System 2:

User eq. # System eq.:

F(v)
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s Results
= System 1

Fraction of Time Spent in

Fraction of Time
Spent in State

Fraction of
Time Spent in
State

Pay for Individual Performance

State
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Pay for Individual Performance

= System 2 N

£ 1 -
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é 0.8
5 Os
E , 06
s B
SH 0.4
5 Hi7
T 0.2
= " ] B a1
0 0.17 0.33 0.5 0.67 0.83 1
State of the Collective
Pay for Group Performance N
1 Hs
E
E % 0.8 1o
S & o.
Ee il s
2= 04
S B
[ 25
E&2o2
0 B e
0 0.17 0.33 0.5 0.67 0.83 1
State of the Collective

Pay for Time

Fraction of
Time Spent in
State

0 0.17 0.33 0.5 0.67 J 1
State of the Collective

N |1 O2 B3 B4 Bs Bes Ev Mes N9 Ao




3.5 Comparisons

= For system 1

= For system 2

Expected Value of the Total Travel

Expected Value of the Total Travel

Time

Time

24 1

23

22 %

21 +

20 +

19

18

25 T

group

————— individual

......................................................................

e

group
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ﬁ 3.6 Discussion

= User equilibrium = system equilibrium (v = v'):
pay-for-individual-performance is the best

= User equilibrium # system equilibrium (v #= v™):
pay-for-group-performance maybe the best (if M is
sufficiently small and N is sufficiently large)
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MONITORING/CONTROL

ﬁ 4. POTENTIAL APPLICATIONS IN RESILIENT

= Resilient Monitoring:

sensor allocation
sensor regime optimization
sensor spatial distribution

s Resilient Control:

control laws for rational controllers

analysis of closed loop systems with rational
controllers

actuator and sensor re-allocation

non-standard control problems (e.g., robot

colonies)
35



ﬁ 5. OPEN PROBLEMS

Learning in the framework of rational behavior
= Modeling of experience-based learning
= Analysis of rational behavior with learning

Groups of individuals with different levels of
rationality

Group behavior under rules of interaction other than
fractional

General theory of rational deciders
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ﬁ 5. CONCLUSION

= Mimicking physical potentials of natural systems led
to airplanes, car, computers, radars, etc.

= Mimicking the capacity of natural systems to
resiliency and adaptation will lead to mechanisms
that can survive in the artificial world of the “survival
of the fittest”.
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