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Game Theory

Quantitative methods for strategic interactions between
entities/players

65+ years of scientific development

8 Nobel Prizes (1994/2005/2007)

— 1994: John Harsanyi, John Nash, Reinhard Selten

“for their pioneering analysis of equilibria in the theory of non-
cooperative games”




Game Theory

Quantitative methods for strategic interactions between
entities/players

65+ years of scientific development

8 Nobel Prizes (1994/2005/2007)

— 2005: Robert Aumann, Thomas Schelling

“for having enhanced our understanding of conflict and cooperation
through game-theory analysis”




Game Theory

* Quantitative methods for strategic interactions between
entities/players

* 65+ years of scientific development
e 8 Nobel Prizes (1994/2005/2007)

— 2007: Leonid Hurwicz, Eric Maskin, Roger Myerson

“for having laid the foundations of mechanism design theory”




Game Theory

Quantitative methods for strategic interactions between
entities/players

65+ years of scientific development
8 Nobel Prizes (1994/2005/2007)

Recent Nobel Prize 2011
— Thomas J. Sargent and Christopher A. Sims
“for their empirical research on cause and effect in the macroeconomy”




Game Theory

* Quantitative methods for strategic interactions be
entities/players

* 65+ years of scientific development ?
. 8 Nobel Prizes (1994/2005/2007) '

* Recent Nobel Prize 2011
— Thomas J. Sargent and Christopher A. Sims

ROBUSTNESS

“for their empirical research on cause and effect in the macroeconomy”

nal expectations to work. When we became aware of Whittle’s 1990 book,
Risk Sensitive Control, and later his 1996 book, Optimal Control: Basics and
Beyond, we eagerly worked through them. These and other books on robust
control theory, such as Basar and Bernhard’s 1995 H — Optimal Control
and Related Minimax Design Problems: A Dynamic Game Approach, pro-
vide tools for approaching the ‘soft’ but important question of how to make
decisions when you don’t fully trust your model.



Game Theory

Quantitative methods for strategic interactions between
entities/players

65+ years of scientific development
8 Nobel Prizes (1994/2005/2007)
Recent Nobel Prize 2011

Crafoord Prize (1999)

— Ernst Mayr, John Maynard Smith and George Williams
“for developing the concept of evolutionary biology”




Game Theory

Quantitative methods for strategic interactions between
entities/players

65+ years of scientific development
8 Nobel Prizes (1994/2005/2007)
Recent Nobel Prize 2011

Crafoord Prize (1999)

Applications in various fields
— Auction theory

— Network science

— Control theory

— Security science

— Transportation

— Biology, etc.



Game Theory: Present

Societies
— International Society of Dynamic Games (1990 - )
— Game Theory Society (1999 -)
— Several regional ones

Conferences and Symposia (humerous)

Book Series

— T. Basar (Series Ed.), Static & Dynamic Game Theory: Foundations &
Applications, Birkhdauser, 2011

Journals (Numerous)
— Games and Economic Behavior
— International J. Game Theory
— J. Dynamic Games and Applications



Game Theory: Present

e Books
— G. Owen, Game Theory, 3rd edition, AP, 1995
— D. Fudenberg, J. Tirole, Game Theory, MIT Press, 1991

— T. Basar, G.J. Olsder, Dynamic Noncooperative Game Theory, 2" edition,
SIAM Classics, 1999

— R.B. Myerson, Game Theory: Analysis of Conflict, Harvard, 1991
— M. J. Osborne, A. Rubinstein, 4 Course in Game Theory, MIT Press, 1994,

* Books (lighter side and more specialized)
— K. Binmore, Fun and Games, D.C. Heath and Co, 1992
— J.D. Williams, The Compleat Strategyst. McGraw-Hill, 1954
— W. Poundstone, Prisoner s Dilemma, Doubleday, 1992



Game Theory: Rich in Models and Concepts

Zero-sum vs. Nonzero-sum games
Non-cooperative vs. Cooperative games
Complete vs. Incomplete information games
Deterministic vs. Stochastic games

Static vs. Dynamic/Differential games
Stackelberg games

Multi-layer and multi-resolution games
Large population games

Bargaining, bidding, auctions, ...



Static Games

Matrix Games
Learning in Games
Stackelberg Games
Games-in-Games



Generic Non-Cooperative Games

* Players: N= {1, 2, ..., N}
— Decision/action for Player i: x; € X.

— Possible coupled constraints: x € Q& X.
— Net utility function for each player: V(x, x_,).

— x_; : decisions/actions of all players other than Player i
— V. is maximized by Player i over Q(x )
— Game triplet: CN, (V) can {Q03)} cn?



Equilibrium of Generic Non-Cooperative Games

e Players: N={1, 2, ..., N}
— Decision/action for Player i: x; € X..

— Possible coupled constraints: x € Q& X.
— Net utility function for each player: V(x, x_).

* Non-cooperative Nash Equilibrium (NE): x*

Vix.* x,*) > Vix, x*), forallx; € X, x, € Q(x,), i €N.

107V

e Players can not benefit by unilaterally deviating from
their strategies.



Equilibrium of Generic Non-Cooperative Games

* Players: N={1,2, ..., N}
— Decision/action for Player i: x; € X..

— Possible coupled constraints: x € Q& X.
— Net utility function for each player: V(x, x_).

* Zero-sum game: N=2, V:=-V =V,
— NE is Saddle-Point (SP).

V(xl*» X,) SV(xl*, xz*) < V(x,, xz*)




Example 1: Prisoner’s Dilemma

C 2, 0,

(G,)
D 3,

=

Both players are maximizers.
NE in pure strategies (D, D) vs. socially optimal solution (C, C)
Loss of efficiency:

Social Welfare under NE 1+
Price of Anarchy (PoA) =

Optimal Social Welfare 2+

Decentralization: Resilience vs. Robustness



Example 2: Battle of Sexes

B 2, 0,

(G,)
S 0, 1,

Both players are maximizers.

B = Bach (or Ballet); S = Stravinsky (or Soccer)

Two NE in pure strategies: (B, B) and (S, S)

One NE in mixed strategy: {(2/3, 1/3), }

It is a strategic game of cooperation (Interests are aligned).

Win-win vs. win-lose situations.



Example 3: Matching Penny Game

(G3)

Both players are maximizers.

No existence of pure strategy equilibrium

SP equilibrium in mixed strategies: {(0.5, 0.5), (0.5, 0.5)}
Value of the game: va/[G;] =0

Every finite zero-sum matrix game has a SPE in mixed
strategies — Minimax Theorem (Von Neumann 1928)

Attacker vs. Defender
Disturbances vs. Robust control



Iterative Algorithms: Best Response Algorithm

x(ntl) =v(x (n)) ifi € K,

(subset of players who update at n)

e Parallel update
* Round robin
 Random polling

Stochastic asynchronous

[5(x,)

> X,



Learning Algorithms

Learning algorithms are essential for applications of game
theory.

Classical learning algorithms
— Best response dynamics
— Fictitious play
A new class of learning algorithms

— No knowledge of your own payoff function
— No knowledge of the payoff function of your opponents
— No knowledge of the action spaces of the opponents

Players have different levels of rationality and intelligence

— Active learner vs. passive learner
— Fast learner vs. slow learner
— Homogeneous learn vs. heterogeneous and hybrid learner

Players do not interact all the time.



Initialize x; o, X,

A 2

Generate actions a, ,, a, ,Using X, , |, X, .|

Y.

Estimate empirical frequencies x, . ; and x,

|

Update x, ,, X, ,based on best responses to
X, .; and x, , ,, respectively.

Evolution of s, B~




Fictitious-Play Algorithms

Column Player H T
H 1,-1 -1,1
Row Player
T -1,1 1,-1
Column
Column o Column
ounts
(4/5,1/5) (1/5,4/5) (1, 0) (1, 0)
1 H H (5/6, 1/6) (2/6, 4/6) (0,1) (0, 1)

2 T T (5/7,2/7) (2/7,5/7) (0,1) (0,1)



Initialize f,, g,

[Zhu et al. CDC 2010]
[Zhu et al. ACC 2011]

A

A 4

Generate actions a, , a, using f_,, g,

|

Receive instantaneous payoffs U, =- U, = U,

A 4

Update f,, g, = Estimate average payoffs

A 2

Evolution of s, B~




Applications to Network Security

L L)
I«‘t' ,}

Firewall/IDS

Router

Attacker Internet

Security Policies:
* IDS Configurations _

* Honeynets Deployment

* Knowledge Sharing

* Security Investment !

* Routing Protocol | = D

* Privacy Setting Administrator Workstation Server




Network Security: A Simple Model

* Consider a two-person game:
— The defender (P1) and the attacker (P2)

— P1 (row player): either to defend (D) or not to defend (ND).
— P2 (column player): either to attack or not to attack (NA).

D 5,

2,

ND 1, -

3,

 Knowledge of P1 and P2:
— Players do not know the payoff matrix.

+ Noise

— Players do not have the knowledge of the action spaces of each

others.



Payoff

Average Payoffs
8 I I I | | I | | I

P1 Avg. Payoff of Choosing a: #1(a1)
. Payoff of Choosing aq: is(as) |7
. Payoff of Choosing ai: ia(a1)

. Payoff of Choosing as: is(as)
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Probability
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Mixed Strategies

Prob. of P1 Choosing ay: f(a1)

----- Prob. of P2 Choosing a1: g(a1)

1000 2000 3000 4000 5000 6000 7000
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8000 9000 10000



Network Security: IDS Configuration




System Model: An Example

* IDS Model
— 2 libraries L={/,, ,}
— 4 configurations (can be constrained): {{/,, .}, 2, {{,}, {/,}}
— An IDS chooses an optimal configuration F'..

e Attacker Model

— An attacker has different types of attack a,, a,, ..., ay,.

— An attacker chooses a sequence of attacks, e.g. from attack
trees, S, ={a,,a,,a;,a,,a: }.

ll | 12 o 13

¢-oje/e0.

30



System Model: An Example

ll lz l3

{11, 12} %) {ll} {12}
| | |

Damage, Cost

31



—  Damage, Cost,s; = |

i

P(F;, a,s)

{119 12}

%)

Gt

)

‘\

—  Damage, Cost, s, = |

/
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Stackelberg Game

 NE is efficient if it is also Pareto optimal solution or it
maximizes X. V. (x; x_).

 One way to induce efficiency is through incentives (e.g.
pricing): Obtain efficient NE of the game with individual
payoffs by choosing proper {r.}.

Vi(x;, x;) = Up(X) - r{x,)

* Essentially a Stackelberg game where {r;} are leaders’ decision
variables.



Stackelberg Solution Concept

Leader announces an action/strategy

Leader




Leader

E
l

P1

P2

P3

PN

[,(x,)

|

[5(x,)

l

[5(x,)

IN(xo)




Volxo s 1xy)) = max V(xy; 1(x,))

Leader

X0

\ 4
| l v l
P1 P2 P3 PN

[1(xo) [(xo) l(xo) In(xo)



Security Games

Attacker

Active Passive

Active Nash Stackelberg

Defender

Passive | Stackelberg Nash

Eavesdropper Jammer

[Manshaei et al., ACM Survey, 2012]



* In addition to N players, Player 0 as leader, with utility V,(x,;
X4,.-, Xy), Who chooses an action/strategy x,to maximize his

utility.

e X a Stackelberg equilibrium solution (SES) if

V(x5 (xy")) = max V(xo; 1(x,))

— (x,) is unique NE solution of the N-person follower game.

* No general clean existence and uniqueness results for multi-
follower Stackelberg solution.

* For two-person NZS games, if X; and X, are compact, V; (x,
X,) is continuous, i = 1, 2, and /,(x,) is characterized by a finite
family of continuous maps, then the NZSG admits a SES.



Example

P2
(Gs)
L 0, 2, 32,
PL ™ | I, 1, 3,
R | -1, 2, 2,

* Both players minimize.



Example (Cont’d)

(G Pz
L 0, 2, 3/2,
P1 w 1, IN, ON 3,
R -1, 2, 2,

* Both players minimize.
* (M, M) is the pure-strategy NE with equilibrium cost(1, 0).



Example (Cont’d)

P2
(G¢)
L ostoist | 2, 302
P1 v 1, B 3,
R 1, 2. 2.

* Both players minimize.
* Player 1 is the leader.
e (L,L)is the Stackelberg equilibrium with cost (0,-1)



Example (Cont’d)

P2
(G¢)
L O’ o) , ﬂSZ : S2
PLom | 1, 1, 3,
R -1, 2, 2,

* Both players minimize.
* Player 2 is the leader.
* (R,R)is the Stackelberg equilibrium with cost (3/2,-2/3).



Example (Cont’d)

(G¢) P2

L 0S!, 18! 2, 3/252 S2

P1 M 1, IN QN 3,

* Both player minimize.
o (0°!, -15) is better than(1N, ON) for P1 (also for P2).
o (3/2%2,-2/3%2) is better than(1N, ON) for P2 (worse for P1).



Graphical Illlustrations

Both players minimize their costs
J; and J, (in quadratic forms).

SE is the Stackelberg equilibrium
with P1 as the leader.

SE yields lower costs for both

players because the interests of
P1 and P2 are aligned in some
way.

SE’ is the Stackelberg equilibrium
with P2 as the leader.

With unique reaction functions,

the leader cannot do worse in SE
than in NE.



Handling the Constraints:
Top-Down vs. Bottom-Up Approaches

U, U, s.t. PFC
U. s.t. PFC & LCs U, s.t.LCs
Bottom-Up Approach Top-Down Approach

PFC: Power Flow Constraints
LC: Local Constraints [Zhu and Pavel, 2008]



Multiple Hierarchies

SL
11 L1 L1
l Jy l v v l l ¥ l
P2 P3| P4 PS5 P6 P7 P8 | P9




Games-in-Games

PMU 1

DC1

Control Room

/

Public Network

Public Network

DC2

SM 1

Example: Secure Routing in Smart Grids

Public Network

SM 2

SDC 2

DC3

PMU 2

SM 3




Level 5

Level 4

Level 3

Level 2

Level 1

Secure Routing in Smart Grids

Control Room

SDC1

DC1 D

Router 1

Router 2

PMU 1

S

/\

O

SDC 2

\

2 DC3

NN

Router 3

M1 SM

2

PMU 2

[Zhu et al., CPSWeek 2011 Workshop]

Router 4

SM 3




Games-in-Games

Control Room
SDC1 SDC2
DC1 DC2 DC3

Router 1 Router 2 Router 3 Router 4
PMU 1 SM1 SM2 PMU 2 Meter 3

[Zhu and Basar, 2011]



Application of Distributed Learning to Games-in-
Games Framework in Cognitive Radio Systems

1w0 T . 1 I T T I I I

SRl e . ' .'//‘L\“ D
' . . . . N * ™ --/- . PO
800 T i
sool | ¢ Asecondary user changes
: its route from the blue line
400% T (b) to red line (c) between S
+ <t . .
sool PU footprint ‘\\ C and D by learning the
N presence of a jamming
i . ' ? .
0 © . attacker.
ro-"

e The communication

environment changes as the
. footprint of the primary
users

[Zhu et al. Globecom 2011]



Dynamic Games

e Extensive Games

* Differential Games
* PoA and Pol
 Large Population Games



Dynamic Games

Repeated games: bargaining, trust games, cooperation, etc.
Extensive games: chess, poker, etc.

Differential/Difference games: pursuit-and-evasion games,
robust control, etc.

Evolutionary games: mutations, learning theory, etc.
Stochastic games

— Competitive MDPs

— Stochastic differential/difference games

— Mean-field games

— Hybrid games



Extensive Games

e P1 minimizes and maximizes.
* Mixed strategy solution is {(2/3, 1/3), (1/3, 2/3, 0)}.



&

Extensive Games

P2 has information at the time
of his play about what move P1
has made.

We obtain two pure Nash
equilibria (L, MR), (L, ML).

(L, MR) can be obtained by
backward induction.

Uq LL RR MM LM RL MR ML RM
1 1 0 3 0 3 3 0
7 6 7 2 6 7 6 2




Information Matters

Gp:m={1}, n:={2,3} (~Open-loop)
Gg: =11}, ny= {{2},{3}} (~Feedback)



Differential Game

* Players: N={1, 2, ..., N}
— Decision/action for Player i: u; € U..
— Possible coupled constraints:

System state x evolves according to the differential equation

z(t) = f(z(t), u1(t),--- ,un(t),t), z(0)=zo

— Each Player i seeks to minimize

T
Ji(u) =A Fi(z(t),ui(t), - ,un(t),t)dt + Si(z(T))

Instantaneous Cost Terminal Value



Information Structures

* Lety, €I/ be the strategies/policies for the players under
information structure #.

* Information structure # can be

— Open-loop (OL): u,(?) =y, (t; x,)

— Feed-back (FB): u,(z) = y; (¢; x(¢))

— Closed-loop (CL): u,(?) = y; (£ xg )

— &-delayed closed-loop (eDCL):

ult) =7 (t; xpgq7), fore>€; uft) =y, (£ x,), for0O<z<e.

* Assumptions:

— y;is Lipschitz in x.

— fis Lipschitz in x and {uy, u,, ..., uy} are jointly piecewise continuous.



Differential game: Player i solves optimal control problem:

T
(0C(@)) min_ Ji(7i,7",) = / Fi(, 7i(n),A™s(), £)dt + Si(z(T))

v; €T

s.t. &(t) = f(z,7(n),7%i(n), 1), =(0) =zo.

¥

o mx
JZZ = ZieN pid; . JZ*
— Inax
pN’l"aT 7)*61"7)* JO

JI° =2 ien ;"

(COC) mlnz,uz{/ Fy(xz(t) (),t)dt—I—Si(a:(T))}.

s.t. z(t) = f(xz,v(n),t), x(0) =z,

Team problem under centralized control




Example: Scalar LQ Differential Games

Each player i minimizes the cost functional:

Jz-=/oo( 2(t) + raui(t)) dt, i € N.

State dynamics:
N
= az(t) + Zbiui(t), z(0) = zo
=1

b,#0,7r.>0, g;>0.
The feedback Nash equilibrium strategies are linear in state

and involve solving a coupled set of algebraic Riccati
equations

N b,
2(“_2&&’%)1‘6 +Qz+3k2 0, Vi ((L’) _,r_?jk?la:a ieN
i=1 (]



Comments

e Each player i minimizes the cost functional:

L:/ (a:z2(t) + ru()) dt, i € N
0

e State dynamics:
N
2(t) = az(t) + Y baui(t), z(0) = zo
=1

* Non-unigueness
— Informational non-uniqueness

— Structural non-uniqueness
— Equilibrium selection (e.g. strong/weak time consistency, robustness
to vanishing perturbations)

 Computational complexity
* Large population approximation



Example: H*- Optimal Control (Perfect State)

—_— P

C b

* Plant dynamics: dx/dt = Ax+Bu+Dw, x(0) =0, u = u(n, 1)

e Zero-sum differential game between u and w.

JLw) = (1) g+ |[C x| + [[ull%g - 7 W]

[Basar and Bernhard, 1995]



Price of Information (Pol)

0 CL FB eDCL oL Cost

* Does it hold for games?

* Pol between two information structures #, and #,:

Max s s Ju

Xp2 (1) = 2
Imnax

[Zhu and Basar, ACC 2010]



Less is More: Case Study

e Leta=0.Then, Pol for the scalar LQ DG is bounded as below
independent of system parameters b,, r;, g;.

V2/2 <XPE < V2

* Example: multi-user flow control
— Each user chooses a data rate d,, equivalently u,, given service rate.
— Users needs to circumvent overflow of the queue and minimizes their

costs Jiw) = /Ooo (|a:(t)|2 + cliluz-(t)lz)

N
qi(t) = Z u;(t)

w; s, o,
€ €

u;i(t) := d;(t) — w;s-(t)
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Pol: Open-loop va. Feadback Information

-
-
-
-

1 2 4 7 8 9 10
N
[ J*(FB) [ J°(™P) [ Jr(OL) | e | e | xPE |
|k | B ARG | [VRGR) V- G+ |

[Basar and Zhu, DGA 2011]



Less is More: A New Paradox?

N S L eeve ra ot :
BN e T S e C e e E]

h; Paradoxi ’
f Choice

BaE }
M T pae——
e ke i ooy
Barry | BT
£— Schwartz —
- | =
e < > e
L - e = iy
2 AEASS
» | BGEEEESEER)

Braess Paradox Paradox of Choice

e A paradox of information

— Players tend to act more conservatively in face of more
information.

— Information is symmetric among players.



Implications

PoA: Efficiency loss in decentralized architecture in
comparison to its centralized counterpart.

Pol: Information structure implies communication protocol
and sensing and monitoring architectures.

Understanding the tradeoffs between efficiency, robustness,
information and resilience.

Value of Information (Vol):

— Structural Vol (e.g. Pol, Shapley Value, Indices of Power) x
Nonstructural Vol (e.g. Quality, Trustworthiness)



Large Scale Complex Systems

* Interactions happen at different resolutions of the system.
 The number of players is large. The number of groups is large.



Hierarchical Complex Systems

Layer 3

Layer 2

Layer 1

* Interactions happen at different layers of the complex system.



Power System as a Hierarchical Complex System

Regulatory Grid

Electricity Market Grid

Communication Networks

Transmission Grid

Distribution Grid

Power Plant

Distribution

Transmission Substation

Substation

Residential
Customer

Commercial
Customer



Multi-Resolution (MR) Large Population Games
— MR Stochastic Differential Game Model
— Mean-Field Nash Equilibrium Solution

— Application and Numerical Examples



Summary

* Game theory is a versatile tool for analyzing and designing
decentralized large-scale systems.

— Rich literature in economics, mathematics, operations research,
computer science, and systems and control.

— Plenty of room for research on applied side of game theory:
mechanism design, learning theory, system theory,
decentralized control, etc.

— Fundamental concepts that enable cross-disciplinary, inter-
disciplinary and trans-disciplinary researches.



Human

Cyber

Physical

Management Layer

S

Supervisory Layer

Network Layer

R N

Communication Layer

Control Layer

QS

Physical Layer

Flow control, PoA and Pol,
data fusion, patching
problem, pricing, etc.

IDS/IPS configuration and
defense mechanism, CODIPAS
learning algorithms, jamming,
eavesdropping, data injection,
secure distributed routing,
reliability, stealthy attack, etc

H-infinity robust control,
adaptive control, fault-
tolerant control
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