Accepting Special Session Proposals and Papers



Frank Ferrese, Naval Sea Systems Command

David Scheidt, Weather Gage Technologies, LLC

Engineering systems are increasingly subjected to disturbances which are not generally predictable at design time. These disturbances can be man-made or naturally occurring, and they can be physical or cyber in nature. In order to ensure resilient system performance, multi-disciplinary control approaches that provide intrinsic state awareness and intelligence are required.

Topical areas include: Control Theory; Control Framework; Sensor Architectures, Monitoring/Control Security; Data Fusion, Data Analytics, Predictive Analytics, Prognostics, Computational Intelligence; Cyber-physical power and energy systems; Robotic systems; Cyber-physical system security, and Cyber security for industrial control systems.


David Manz, Pacific Northwest National Laboratory

Michael Haney, University of Idaho

Engineered systems in use today are highly dependent on computation and communication resources. This includes systems of all kinds, ranging from vehicles to large-scale industrial systems and national critical infrastructures. The resilience of the computational systems and infrastructures underlying these technologies is of great importance for mission continuity, security and safety. Resilience, in this context, is understood as the ability of a system to anticipate, withstand, recover, and evolve from cyber-attacks and failures. In this symposium we will focus on the topic of resilience of cyberphysical systems. Among others, the concepts of cyber awareness, anticipation, avoidance, protection, detection, and response to cyber-attacks will be promoted and will help set the tone of the event. A better understanding of the science and engineering of these concepts and its supporting technologies will help provide some of the key underlying capabilities for the design and development of resilient cyber-physical systems.

Topical areas include: Cyber Architecture; Human Machine Interaction and Cyber Social understanding; Human Systems Design, Human and Systems Behavior; Education and Workforce Development; Sensor Architectures; Data Fusion; Computational Intelligence; Resilient Cyber Frameworks and Architectures, Adaptive/Agile/Moving Defenses, and Resilient Cyber-physical power and energy systems.


Ron  Boring, Idaho National Laboratory

Roger Lew, University of Idaho

Many environments critical to cyber and physical infrastructure exhibit interplays between engineering systems design and human factors engineering. The Cognitive Systems track will explore how people, individually and in teams, engage in cognitive and cooperative problem solving in complex, time-critical, and high-consequence settings. We will emphasize technology designs, operating concepts and procedures, and cognitive science research that improves overall human-system performance and increases the resilience and robustness of complex sociotechnical systems. Joint sessions with the Control Systems and Cyber Systems Symposia will explore the functional relations of systems integrating humans, automation, and system management resources.

Topical areas include: Selection, training and performance in complex socio-technical systems; Human performance models of event response; Cognitive readiness in high-consequence environments; Macroergonomics, systems design, and safety; Human factors of security, privacy, and trust; Situation cognition in cyber, physical, and hybrid environments; Procedures, checklists, and skilled performance; Human supervisory control and complex systems performance; Distributed cognition, expertise coordination, and teamwork; Human-machine interaction with automation, computers, and robots, and Autonomous and semi-autonomous systems/technology.


Krishna Kant, Temple University

Gurdip Singh, Syracuse University

Many commercial and government applications require reliable and secure communications for effective operations. These communications are often challenged in contested environments – whether from hostile states in a denial of service scenario, degraded infrastructure following a man-made or natural disaster, or finite spectrum pressure that restrict agility. The symposium will highlight how incorporation of resiliency in communications systems can support a wide range of applications given uncertainty in the communication environment.

Topical areas include: Architectures; Threats and Failures; Remediation and recovery; Characterization; Networks and Infrastructure; Military applications, and Civil applications.