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Outline of Presentation

 Introduction

 SFR Fuels Experience in the US
– Fuel Types
– Fuel Performance Issues
– Experience/Testing

 Experience with Fuels Containing Minor Actinides

 Summary
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SFR Fuels Experience in the US
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SFR Fuels Experience in the US

 Metallic Fuels
– EBR-I, Fermi-1, EBR-II, FFTF
– U-Fs, U-Mo, U-Zr, U-Pu-Fs  U-Pu-Zr, others

 Mixed Oxide Fuels (MOX)
– EBR-II, FFTF
– (U,Pu0.2-0.3)O2

 Mixed Carbide Fuels (MC)
– EBR-II, FFTF
– (U,Pu)C w/15% (U,Pu)2C3



Comparative fuel designs

Ceramic fuel
Metallic fuel

Oxide Carbide Nitride

Fuel form
Theoretical density (TD), g/cm3

Smeared density, %TD
Smeared heavy metal density, g/cm3

Mass fraction of non-metal, %
Melting temperature, K
Thermal conductivity, W/m-K
Crystal structure
Bond material
Achieved burnup, % atom 

(U,TRU)O2
11.1

85
8.3

11.8
2930
1.70

b) SC+FCC
He

~15

(U,TRU)C
13.6

75
9.7

4.8
2750
18.8
FCC

Na or He
~10 or ~15

(U,TRU)N
14.3

85
11.5

5.5
3070
15.8
FCC

Na or He
~15

U-TRU-10Zr
15.7

75
10.6

10.0
1000
~27

c) α, β, γ
Na

~19

5
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Metallic Fuel Design (EBR-II)

Features of a Metallic Fuel Pin (from Pahl, et al, 1990)
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Metallic Fuel Design (FFTF)

FFTF Series III.b Metallic Driver Fuel Design (from Pitner and Baker, 1993)

(75% Smear Density)
-3 slugs

Gas Plenum
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Important Metallic Fuel Performance Phenomena

 Irradiation growth
 Fuel swelling and fuel-cladding 

mechanical interaction (FCMI)
 Gas release
 Fuel constituent redistribution
 Fuel-cladding chemical 

interaction (FCCI)
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Metallic Fuel Behavior—Axial Growth

U-10Zr U-8Pu-10Zr U-19Pu-10Zr

Axial Fuel Growth, from Pahl et al, 1990



10

Metallic Fuel Behavior—Swelling & 
Restructuring

X423A at 0.9% BU

X420B at 17% BU

X419 at 3% BU

As fabricated U-20Pu-10Zr

• Redistribution of U and Zr occurs early
• Inhomogeneity doesn’t affect fuel life

Zr-rich phases
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Metallic Fuel Behavior—Swelling & Gas Release

 Swelling
– Low smear density fuels
– Rapid swelling to 33 vol% 

at ~2 at.% burnup
 Gas Release

– Inter-linkage of porosity at 
33 vol% swelling results in 
large gas release fraction

– Decreases driving force for 
continued swelling

U-19Pu-10Zr (-phase)
at 2 at.% burnup
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Metallic Fuel Behavior—Fuel Constituent 
Redistribution

U-Pu-Zr

Lower
Melting
Phase

U-Pu-Am-Np-Zr
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U-19Pu-10Zr with D9;
12 at.% burnup

(from Pahl, et al, 1990)

Metallic Fuel Behavior—Steady-state FCCI

 Fuel-Cladding Inter-diffusion
– RE fission products (La, Ce, Pr, Nd) 

and some Pu reacts with SS cladding
– Interaction product brittle
– Considered as cladding wastage
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MOX Fuel Design (FFTF)

a)                                                                                         b)

FFTF He-bonded MOX Fuel:  a) Driver Fuel and b) Core Demonstration Experiment Fuel 
(from Bridges et al, 1993)
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Important MOX Fuel Performance Phenomena

 Fuel swelling and FCMI
 Fuel restructuring
 Gas release
 FCCI
 Fuel-coolant compatibility
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MOX Fuel Behavior—Fuel Swelling and FCMI

Diameter and cesium fission product accumulation in high-temperature MOX pins, 
HT9-clad (a) and D9-clad (b). Cs interacted with MOX fuel causing FCMI.
(from Bridges, et al ,1993)

(a)                                                                    (b)
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MOX Fuel Behavior—Restructuring

MOX fuel ceramography of FFTF driver fuel produced by Kerr-McGee and Babcock and Wilcox,
showing restructuring as a function of burnup.  (from Hales, et al, 1986)

50,   100 MWd/kgM
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MOX Fuel Behavior—Gas Release

(from Lambert, et al, 1994)

 MOX fuel operated at high temperature and undergoing 
restructuring exhibits high gas release.
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MOX Fuel Behavior—FCCI

Melting T vs O/M
(from Morimoto, et al, 2005)

 Hypostoichiometric MOX for SFRs
– As-fabricated O/M < 2.00 to suppress 

free oxygen at high burnup, mitigate 
FCCI

– O/M ratio affects fabrication
– O/M ratio affects properties

Sample 1 – MOX + MAs
Sample 2 – MOX+MAs+REs
Sample 3 – MOX+MAs+REs+NMs
(from Morimoto, et al, 2005)
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MOX Fuel Behavior—Fuel-coolant Compatibility

Typical breach extension in 
induced midlife failure,

EBR-II K2B test.
(from Lambert, et al, 1990)

 Run-beyond-cladding-breach 
(RBCB) of MOX accompanied by 
fuel/Na reaction and initial crack 
extension

 Fuel loss can be related to degree 
of interaction.

 Reactant layer becomes coherent 
and inhibits further reaction with 
coolant.
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Base Fuel Technology:  US Experience
Crawford, Porter, Hayes, Journal of Nuclear Materials, 371:  202-231 (2007).

Metallic Mixed Oxide Mixed Carbide
Driver Fuel 
Operation

≥ 120,000 U-Fs rods in 
304LSS/316SS 1-8 at.% bu
~13,000 U-Zr rods in 
316SS 10 at.% bu

>48,000 MOX rods in 
316SS (Series I&II) 8 at.% 
bu

None applicable

Through 
Qualification

U-Zr in 316SS, D9, HT9 ≥ 
10at.% bu in EBR-II & 
FFTF

MOX in HT9 to 15-20 at.% 
bu (CDE)
MOX in 316SS to 10 at.% 
bu

None applicable

Burnup 
Capability & 
Experiments

600 U-Pu-Zr rods; D9 & 
HT9 to > 10 - 19 at.% in 
EBR-II & FFTF

4300 MOX rods in 316SS to 
10 at.%; fab var’s; CL melt
3000 MOX rods in EBR-II; 
peak at 17.5at.% bu
2377 MOX rods in D9 to 10-
12 at.% bu; some at 19 at.% 
bu

18 EBR-II tests with 472 rods in 
316SS cladding; 10 rods up to 20 
at.% w/o breach
5 of which experienced 15% TOP 
at 12 at.%
219 rods in FFTF, incl 91 in D9, 91 
with pellet & sphere-pac fuel

Safety & 
Operability

6 RBCB tests U-Fs & U-
Pu-Zr/U-Zr(5)
6 TREAT tests U-Fs in 
316SS (9rods) & U-Zr/U-
Pu-Zr in D9/HT9 (6 rods)

18 RBCB tests; 30 
breached rods
4 slow ramp tests
9 TREAT tests MOX in 
316SS (14 rods) & HT9 (5 
rods)

10 TREAT tests (10 rods; Na or 
He bond); ≤ 3-6 times TOP 
margins to breach
Loss-of-Na bond test; RBCB for 
100 EFPD; Centerline melting test
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Transient Fuel Phenomena

 Metallic Fuels
– Pre-failure Behavior

Substantial axial expansion
Cladding strain due to gas pressure
Possible fuel-cladding liquefaction

– Failure Behavior
Failure generally near top of fuel 

column
Stress rupture due to gas pressure 

in cladding thinned by eutectic-like 
penetration and weakened at high 
temperature

– Post-failure Behavior
Possible fuel injection into coolant
Low stored energy, no reaction with 

coolant, some local sodium voiding

 Oxide Fuels
– Pre-failure Behavior

Axial relocation (apparently, upward 
axial motion)

Cladding strain due to FCMI and gas 
pressure

– Failure Behavior
Failure generally in upper 1/3 of fuel 

column
Cladding melt-through with gas 

pressure and FCMI, cladding 
weakened at high temperature

– Post-failure Behavior
Fuel dispersal into coolant
Relatively high stored energy, 

reaction with coolant, local sodium 
voiding
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1 - Unaffected cladding
2 - Fuel/cladding solid-state interaction
3 - Fuel/cladding liquid phase

Transient Phenomena—Metallic Fuels
Fuel/Cladding ‘Eutectic’ Formation

U-10Zr / HT9 at 800°C, 1 hr
(from H. Tsai, et al, 1990) 3
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Metallic and MOX Fuels—Summary

 Metallic Fuels  (U-Zr or U-Pu-Zr)
– Acceptable performance and reliability demonstrated up to 10 at.% burnup, with 

capability demonstrated to 20 at.% burnup
– Robust overpower capability demonstrated in TREAT tests: ~ 4 to 5x’s nominal 

power; failures near top of fuel column; pre-failure axial expansion
– Performance issues typically creep rupture at high burnup, accelerated due to 

FCCI.
– Performance phenomena with U-Fs, U-Zr & U-Pu-Zr are the same.  Burnup, 

temperature and cladding performance are key variables
 MOX Fuels

– Acceptable performance and reliability demonstrated up to 10 at.% burnup, with 
capability demonstrated to 20 at.% burnup

– Robust overpower capability demonstrated in TREAT tests: ~ 3 to 4x’s nominal 
power; well above primary and secondary FFTF trips; failures near core mid-
plane; pre-failure axial fuel motion

– Performance issues typically creep rupture at high burnup, accelerated due to 
FCMI (and FCCI if O/M not controlled).

 Metallic and MOX fuel performance in SFRs are both well known, with 
good experience in the US (MOX fuel in France, Japan)
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Experience with Fuels Containing
Minor Actinides
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SFR Transmutation Fuels with Minor Actinides 
(MAs) and Rare Earth (RE) Fission Products

 Unique Features of SFR Transmutation Fuels
– Pu content, which depending on CR selected my be 

higher than historic database (with corresponding 
decrease in U content)

– Minor actinides (Am, Np, Cm) present in significant 
quantities

– Rare earth fission product (La, Ce, Pr, Nd) carry-
over from recycle step may be non-trivial

 Gives Rise to Challenges and Unknowns
– Need for remote fuel fabrication
– Likely need for new fabrication methods (e.g., due 

to Am volatility; waste minimization, etc.)
– Effects on fuel performance must be determined
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Metallic Fuel with MA—X501 Fabrication

 U-20.2Pu-9.1Zr-1.2Am-1.2Np
 Injection cast at 1450°C
 Inhomogeneous microstructure
 Am and Np segregate to phases with variable 

composition

21-47 U
14-49 Pu
9-19 Zr
0-25 Am
0-18 Np
Impurities

6 U
3 Pu
6 Np
86 Zr

Lower section; slower cooling
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HT9 Cladding

Metallic Fuel with MA—X501 Irradiation

 LHGR = 450 W/cm
 PICT = 540°C
 Burnup = 7.6%
 241Am transmutation = 9.1%
 Gas Release

– Fission gas = 79%
– Helium = 90%
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AFCI Fuels Testing in the ATR East Flux Trap

 4 Capsule Positions in EFT
– Cd shrouds in 1,2,3,4
– 6 rodlets per capsule
– 24 rodlets irradiated 

simultaneously

 Capsule Limits
– LHGR ≤ 500 W/cm
– PICT ≤ 650°C
– Capsule pressure ≤ 975 psi

East Flux 
Trap 

4

2
5

1

3
6

7
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Cd 
Experiment 

Basket

Upper Spacer

Rodlet 1

Rodlet 2

Rodlet 6

Bottom Spacer

Top Endplug

HT-9 Rodlet Cladding

SS Spring

He Gas Plenum

Insulator Pellet

Oxide Fuel Column

Insulator Pellet

Bottom Endplug
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AFC-2A,B Currently Under Irradiation in the ATR

 AFC-2A,B Test Matrix

 AFC-2A,B Test Objectives
– LHGR = 350 W/cm; PICT = 550°C
– Burnups of 10 at.% (2A) and 25 at.% (2B)
– Group recovery of 30 year-cooled PWR TRU
– Effect of RE fission product carry-over on FCCI

Rodlet AFC-2A&B

1 U-20Pu-3Am-2Np-15Zr

2 U-20Pu-3Am-2Np-1.0RE-15Zr

3 U-20Pu-3Am-2Np-1.5RE-15Zr

4 U-30Pu-5Am-3Np-1.5RE-20Zr

5 U-30Pu-5Am-3Np-1.0RE-20Zr

6 U-30Pu-5Am-3Np-20Zr

RE=6% La, 16% Pr, 25% Ce, 53% Nd
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AFC-2C,D Currently Under Irradiation in the ATR

 AFC-2C,D Test Matrix
Rodlet AFC-2C&D

1 (U0.75,Pu0.20,Am0.03,Np0.02)O1.95

2 (U0.80,Pu0.20)O1.98

3 (U0.75,Pu0.20,Am0.03,Np0.02)O1.98

4 (U0.75,Pu0.20,Am0.03,Np0.02)O1.95

5 (U0.80,Pu0.20)O1.98

6 (U0.75,Pu0.20,Am0.03,Np0.02)O1.98

 Test Conditions
– LHGR = 350 W/cm
– PICT = 550°C
– Group recovery of 30 year-cooled 

PWR TRU
 Test Objectives

– Study effect of O/M on FCCI
– Include MOX as control
– High CR (20% Pu) for initial oxide 

test 
– Discharge criteria

2C: ≥ 10 at.% burnup
2D: ≥ 25 at.% burnup
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Comparison of Spectra (ATR vs. LMFBR)

 ATR Neutron Energy Spectrum
– Highly thermal spectrum in EFT with no 

neutron filter
– Unaltered spectrum will result in 

significant self-shielding in dense, 
highly-enriched fuels

 Cd-shroud Integral with Experiment 
Basket

– Efficient removal of neutrons with 
energies below cadmium cut-off

 Resulting Spectrum
– Filtered spectrum in experiment does 

not have prototypic fast neutron 
component

– Epi-thermal component responsible for 
most fissions; much more penetrating 
than thermal neutrons

– Test fuels are free of gross self-
shielding
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Radial Flux Depression and Temperature 
Profiles in Test Fuels

 How prototypic are AFC rodlets 
irradiated in the ATR?

– Assessed by analysis
– Radial power profiles calculated w/MCNP
– Depletion in fuel and Cd shroud 

calculated w/ORIGEN (MCWO)
– 1-D thermal analysis using radial powers

 Resulting temperatures for AFC-2C,D 
oxide rodlets

– 3 cases:  SFR, unshrouded ATR, ATR 
w/Cd shroud

– w/Cd shroud, peak-to-avg power at fuel 
periphery is 1.22; fuel central temperature 
58°C less than SFR (~400°C less for 
unshrouded case)
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Experience with Carbides and Nitrides



U.S. Carbide/Nitride Fuel Experience

EBR-II Testing:  ~470 (U,Pu)C rods, ~100 (U,Pu)N 
rods

FFTF:  ~200 (UC-PuC) rods –pellets and sphere-pac, 
>50 UN rods

AAA/AFCI:  (U,Pu,MA)N, (Zr,Pu,MA)N – ATR and 
Phenix tests

GenIV GFR:  (U,Pu)C Dispersion 
ROVER: (U, Zr)C in graphite
SP-100: UN
 JIMO:  UN
Other:  UN, UC, UC-UC2, BISO, TRISO

36



Carbide Thermal Conductivity

Matthews, R.B. and R.J. Herbst, Uranium-Plutonium Carbide Fuel for Fast Breeder Reactors. Nuclear Technology, 1983. 63: p. 9-22.
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(U, Pu)Cx Fuel Design (FFTF)

FFTF He-bonded Carbide Fuel 

Matthews, R.B. and R.J. Herbst, Uranium-Plutonium Carbide Fuel for Fast Breeder Reactors. Nuclear Technology, 1983. 63: p. 9-22.
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Sphere pac alternative to traditional pellet 
design

Stratton, R.W., et al., Fabrication Processes, Design and Experimental Conditions of the Joint U.S.-Swiss Mixed Carbide Test in FFTF 
(AC-3 Test). Journal of Nuclear Materials, 1993. 204: p. 39-49.
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Challenge 1:  Fabrication

 Carbides
– Casting (UC)

Arc casting
Skull-melting

– Reaction sintering (UC)
UO2 +3C  UC + 2CO (+U+C)

– Direct carborization (UC)
U + C  UC

– Carbothermic reduction (U,Pu)C
UO2 +3C  UC + 2CO 

– Microspheres (U,Pu)C
Sol-gel
Electrode atomization

40

 Nitrides
– Direct nitration

UN, PuN
– Hydride-dehydride-nitride

UN, PuN
– Low Temperature

UN via fluoride/ammonia
– Carbothermic reduction

(U,Pu,MA)N, (Zr,Pu,MA)N



Typical Nitride Feed Synthesis and Pellet 
fabrication with the minor actinides

Pellet fabrication typically by dry process using cold 
press/sinter approach
– Densities varied by fuel application/design 
– Grain sizes also determined by fuel application

41

Am Oxide feed

Np Oxide feed

U or Zr Oxide 
feed

(additives/
Mill/

Cold-press

Sinter

1400-1800°C

Green 
pellet

(Pu,Am,
Zr)N

Solutionize

1700°C

Solution 
(Pu,Am,Zr) 
Oxide feed

Carbothermic 
reduction

Solution 
(Pu,Am,Zr) 
Nitride feed

Pu  Oxide feed



Examples of fabrications for recent actinide 
bearing nitride fuels.
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Low-Fertile:  
(U0.5Pu0.25 Am0.15Np0.10)N

Non-Fertile:
(Pu0.5 Am0.5)N-36ZrN 

AFC-1G Pellets
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Challenge 2:  Swelling in carbides

Maximum cladding strain as a function of peak 
burnup for helium-bonded carbide fuel pins.

Matthews, R.B. and R.J. Herbst, Uranium-Plutonium Carbide Fuel for Fast Breeder Reactors. Nuclear Technology, 1983. 63: p. 9-22.



Challenge 2 for nitrides in fast spectrums

44

Natural nitrogen:  99.6% 14N and 0.4%15N

– generation of the radiotoxic long life 14C (which has to 
be managed in spent fuel or during recycling) from 
14N(n,p) reaction, 

– production of 11B (which provides a neutronic penalty) 

– production of He (which may lead to a larger fuel 
swelling and pin pressurisation) from 14N(n,a) 
reaction.



15N Enrichment Processes
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NO/HNO3 chemical exchange 

Cryogenic distillation 

Chromatographic separation 

 

15NOgas +H 14NO3aq
←    →   14 NOgas +H 15NO3aq

 

14NOliq +15NOgas
← →  15NOliq +14NOgas

 

14NH4
+R−+15NH4OHaq

← →  15NH4
+R−+14NH4OHaq
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Stainless-Steel Cladding & Duct Performance

 Performance Issues
– Cladding dilation
– Duct dilation, bowing, or twisting

 Irradiation Behavior
– Void swelling (AS)
– Irradiation creep (AS & FMS)
– Irradiation embrittlement (AS & FMS)

 Alloys to Address Issues
– Advanced austenitic stainless steels
– Ferritic & tempered-martensitic stainless steels
– Oxide-dispersion strengthened steel alloys
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Summary

 SFR Fuels Experience in the US
– Fuel Types
– Fuel Performance Issues
– Experience/Testing

 Experience with Fuels Containing Minor Actinides

 Carbide and Nitride fuels are considered attractive relative to 
oxides, but there are several materials challenges that must be 
better understood and addressed.
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