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Overview

» Perspective on scattering for investigating radiation defects

Scattering response of crystals with lattice defects

Diffuse scattering theory for lattice defects

Diffuse scattering for investigating precipitates and radiation induced loops

Techniques for investigating displacement cascade dynamics on time scales
from milliseconds to picoseconds



Comments and Perspective

The presentation emphasizes x-ray scattering, although the concepts discussed
apply to neutron and electron scattering as well

Electron microscopy provides direct imaging of clustered defects, which is of
course the measurement of choice for electrons

Neutron small angle diffuse scattering has been particularly useful in studies of
clustered defects such as voids and precipitates

Neutrons are often more valuable for investigations that x-rays are not
able to address well (e.g. magnetism, hydrogenous materials, etc.)

The lecture is meant to be used in conjunction with the below referenced book

chapter review and references therein,*

*B. C. Larson, “X-ray Diffuse Scattering Near Bragg Reflections For The Study Of
Clustered Defects In Crystalline Materials,” in Diffuse Scattering and the
Fundamental Properties of Materials, ed. Barabash, Ice, & Turchi (Momentum
Press, New York, NY 2009). [pdf copy provided]

(Cont.)



Comments and Perspective (cont.)

- Radiation induced defects have important timescales from sub-picoseconds to
giga-seconds (~40 years — reactor lifetimes) — 20 orders of magnitude

Damage includes dislocation loops, voids, dislocation tangles, radiation
enhanced precipitates, as well as grain-boundary impacted/denuded zones
and other local microstructure effects.

For ensembles of point defect clusters and microstructural complexities
there is no substitute for the direct imaging electron microscopy capabilities

There is a tradeoff between direct observation on the one hand versus
non-destructive measurements, small cluster visibility, sequential
annealing experiments, and in-situ measurements on the other

The employment of multiple measurement types and close connections
with theory and modeling is of almost indispensable value

The interpretation of picosecond time-resolved diffuse scattering from
displacement cascades is an example in which molecular dynamics based
diffuse scattering simulations will be critical



Dynamics of Irradiation Induced Defects
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Defect Diffuse Scattering in Crystals

» Perfect crystals scatter x-rays into sharp peaks at Bragg reflections

 Distortions from lattice defects decrease Bragg peak intensities and
distribute scattering between Bragg peaks according to the size and
magnitude of the lattice disruption.
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Real Space and Reciprocal Space (Fourier Transform) Connection

Real and Reciprocal Space Scattering Geometry BCC Real Lattice
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Diffuse Scattering As A Tool To Study Defects

Diffuse Scattering Geometry Schematic Diffuse Scattering Domain Schematic
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Diffuse Scattering from Spherical Precipitates
in Quenched and Aged Cu(1%)Co

Diffuse Scattering from Cu 1% Co
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Cross-Sections and Scattering Geometry

iIK-r

11

To quantify scattering, we consider an incoming plane wave with intensity |, particles/
unit area/sec. We then measure (at angles 0,¢) the number of particles scattered into
a solid angle AQ, where 1(0,¢) is the rate of particles detected and

Area of Detector
(Distance from Sample)’

AQ=A,/R* =

The scattering cross section for the sample is then defined by,

do(6.9) _ 16.9)
iQ  1,-AQ

Therefore, it is necessary to know the solid angle AC) at the detector 6,¢ and the
incident beam intensity |, onto the sample.




Cross-Sections and Scattering Geometry (cont.)

 For N identical, randomly distributed defects or defect clusters z
10,9) do (0.0) (AQ) & do(0.9) (AQ) v 20.(6:9) (AQ)
I dQ & dQ - dQ A
_ 90109 (A0 _ do,(0.9) (A) &\ No absorptior
- N - pDVsample
dQ dQ
p, = Density of defect scattering centers (defects/cm’) teﬁ’
V... = Effective sample volume (i.e. considering absorption) N
(AQ) = Solid angle subtended by the detector (detector area/(distance’))
I, = % here P, is the power and A is the cross - sectional area of the beam

sample A-t,., where t, Isthe effective thickness irradiated
(t, is the sample thickness along the incident beam for no absorption)

do,(0.9) (AQ)

10,9) _ do,(0,9) (AQ)  1(6.9) _ .
IO - pDvsample 4O - & - pDA teﬁ‘ 4O
A
do,(6.9) (AQ)

We then get (independent of A) the result : 1(6,9) = P,pyt,, 10




Cross-Sections and Scattering Geometry (cont.)

For the common cases of symmetric Bragg geometry and symmetric Laue geometry
and samples with a finite linear absorption coefficient, u (cm™), t; IS given by

sin(6) _

f, = —
sin(0) U,

T ouy——  dt 1
eff J-e

0
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Separation of Bragg and Defect Diffuse Scattering

For the kinematic case the total scattering is given by:

X-rays 4 elK r;
do(K) o G " < 2
= AK)|" =D, 1 £ (K)e™" -
dQ i Neutrons Zb e
* 2
v vy =yl
1) - ~ Scattered Intensity ‘ <|‘V| >
D j Perfect Crystal Ensemble Average
Intensity
2 ® * * %
<|¢ + | > = <¢ O+ Yty ¢ +y l//> A formal interference experiment shows 2
N B (after adding and subtractlng<1// > KW)‘

<¢ n l//| > |¢ +<l// | <|‘/f|2> B |<l//>|2 and .rearranglng) that only (l//)ls coherent

and interferes with d) [M. Lax, Rev. Mod. Phys.
Total Bragg Diffuse (1951); P. Dederichs, Solid State Physics (1972)]

w)| == Bragg Scattering <|1//|2> —|(w)| == Fluctuation or Diffuse Scattering

i L




Single Defect Approximation for Diffuse Scattering

Associating Y/ with the scattering amplitude Zi’efieiK'ri , <\l//\2> - Kl//>‘2leads to

i
iKer;

<|‘//|2>:< 1S, >:<Zr€2ﬁfjeiK-(r,.—rj)>
KW)‘Z - ‘<Z’”eﬁ€iK'ri> = <ZrefieiK'r' ><Zrefje""<'rj>

O =)k =T () <o)

For defects on statistically random sites in the average (i.e. periodic) expanded
lattice with a defect-induced static Debye-Waller factor, L(K) = cZ[l— cos(Kes(r,)],*
diffuse scattering in the so-called “Single Defect Approximation” results:

- .
do(K) : 2
o) _ X d iHor{ i r! L(K) lq r, [ iKes(r))
{ 10 } —Zref] +2rfe [e — ]
Diffuse J
Sum over atoms Sum over atoms in distorted
in defect cluster lattice surrounding cluster

*P.H.Dederichs, Phys.Rev. B4,1041 (1971)



Diffuse Scattering Cross-Section for Defect Clusters

[dG(K)} _ ”ir
dQ Diffuse J ;

Zeiq’rf [eiK'S(r") - 1] = iKes(q) + Zeiq'r" :cos(K-s(rl.)) —1+isin(Kes(r,)) — iKes(r, )]

i

2

d _Her? iger! —L(K) iqer; [ iKes(r;)
f].e Te ’+Zrefie e [e —1]
i

= iKes(q) + Zeiq'ri _—(K-s(rl.))z /2 + higher order terms}

Coherent Precipitate
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Kes(q) is known analytically and

S(r)~1 / r* for finite clusters, so

the lattice sum converges rapidly
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Accurate scattering cross-sections
require the use of numerically
calculated displacement fields s(r)
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This is very important to get
accurate sizes & densities




Diffuse Scattering from Spherical Precipitates
in Aged Cu(1%)Co
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Diffuse Scattering for Cobalt Precipitates in Copper

Intensity vs ¢
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« The small-q (Huang) region measures a high moment of defect radius and
no direct size information

« The measurement resolution (i.e. detector solid angle subtended) may
not be small enough obtain reliable information at small q.




q* Weighted Calculated Diffuse Scattering Cross-Section
for Spherical Precipitates in An Isotropic Medium

Distorted lattice scatter Direct defect scattering
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Diffuse Scattering for Cobalt Precipitates in Copper

Intensitx VS

Need to limit strong
influence at small q,
where resolution and
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Determination of The Size Distribution for Coherent
Cobalt Precipitates in Aged Cu(1%)Co
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in Materials, MRS 82, 79 (1987): MRS 82, 73 (1987)



Small Angle Neutron Scattering (SANS) Study of Coherent
Cobalt Precipitates in Aged Cu(1%)Co
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Small Angle Neutron Scattering (SANS) Cu(17%)Co:

Linear Scale
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Recalling Comparison of Small Angle Neutron Scattering (SANS)
and X-Ray Bragg Diffuse Scattering Size Distributions

Precipitate Size Distribution Compared to
S;mall Angle Neutron Scattering Results

® SANS ¥ ¥]=-1.42 %
il X-Ray - Co Precip.
E 0.6 77..--
: 0%
> 0.4 %%
0 : ///% % 7/7.3'7!4““—
Radius (A)

Spooner, lida, & Larson, in Characterization of Defects in Materials, MRS 82, 79 (1987): MRS 82, 73 (1987)



Scattering Cross-Sections Calculated for Interstitial
And Vacancy Loops in Copper

Weighted by g4/R2

-
o

@ R 1AIPx 1012 (a5

10 A 20 A

Vac. Vac. Vac.
-« ¢

™TrTrTrr T T T T T T T T T Y

H = (222)
40 A
Int.

40 A

E=_

2.08

4R

= éO =-0.026 for R=20A

20 A
Int.

E=-

N

10 A ]
Int.

Note that g*¢/R?
removes the Huang
divergence at g=0
and
normalizes the
scattering to the
number of point
defects in the loops

0.135

K 222

[Larson & Young, Phys. Stat. Sol. (a) 104, 273 (1987)]
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Interstitial and Vacancy Loops in Ion Irradiated Ni

dG K,R. *c(t) 2u.tl/sin(@ a0 ,
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« Equal intensities for positive and negative g implies ~ 1o 4 |
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* Vacancy loop sizes are smaller than interstitial loops :
* X-Ray and TEM size distributions agree for R > 20 A 1|
. . 1013 i “
 TEM observations miss most vacancy loops/clusters 0 20 40 60 80

Loop Radius (A)
[Larson'et al,in'Point'Defects and Defect Interactions in Metals, Takamura, Doyama, & Kiritani (Tokyo, 1982), 679]



Interstitial and Vacancy Loops in 4 K Neutron
Irradiated Cu and After 60-300 K Anneals
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Figure 4. Defect-induced diffuse intensity scaled
by ¢*in Cu, after irradiation (curve Al), and after
recovery at the different temperatures T, as indi-

cated.

» q* weighted scattering (left) indicates vacancy and interstitial
loops in 4K neutron irradiated Cu for 60 -300k anneals

* The maxima in the interstitial loop scattering (left) tends to
smaller q (i.e. larger radii) with higher temperature

* The intensity maxima for vacancy loops (left) change only
slightly with annealing temperature

* The size distributions for vacancy and interstitial loops (right)

indicate interstitial agglomeration but no vacancy agglomeratlon
[R. Rauch et al., J. Phys.: Condens. Matter 2, 9009 (1990)]




Intensity (Arb.)
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Submicron Depth Resolved Diffuse Scattering
Measurements in 10 MeV Self-Ion Irradiated Si
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Intensity (Arb.)

Size Distributions and Ratio of Vac./Int. in Self-Ion
Irradiated Si as A Function of Implantation Depth
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* The fraction of vacancies is 10x larger near the surface
* The fraction of vacancies is 10x smaller near the Si-ion end of range
* This result is consistent with the so-called vacancy implanter effect




Atomic Displacement Cascade Dynamics
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Very Large Number of Molecular Dynamics Simulations of
Cascades - Over 50 Years

No Real-Time Measurements of Structural Dynamics !
Impact of Electronic Excitations is Not Included

Molecular Dynamics Simulations
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Sub-picosecond Sensitivity of Diffuse Scattering to Cascade
Dynamics Using 100-fs LCLS Pulses
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Concluding Comments

Radiation environment induced lattice defects have dynamics and
evolution on time scales ranging from femto-seconds to giga-seconds

Powerful theoretical frameworks exist for determining the response of
scattering probes to lattice defects and defect clusters

Diffuse scattering measurements combined with numerical cross-section
calculations provide detailed information on defect clusters

Accurate lattice displacements and strain fields surrounding defect clusters
are critical for extracting defect cluster size distributions

Diffuse scattering provides a method for pump-probe investigation of the

dynamics and evolution of displacement cascades on picosecond and
longer times scales using sub-picosecond x-ray pulses at the recently
commissioned Linac Coherent Light Source (LCLS)

Molecular dynamics and kinetic Monte Carlo simulations have not been

tested experimentally below milliseconds — comparisons with time-resolved
diffuse scattering will benchmark our understanding of cascade dynamics
and defect evolution at early stages within cascade formation and evolution



Appendix
Supplementary Details and Studies

Formal theory of scattering
Theory of the coherent wave

Huang diffuse scattering closed form
expression

Statement of single defect
approximation



Formal Theory of Scattering Solution for Defects

ik-r

The Lippmann-Schwinger equation provides a formal solution for the scattering of a
particle . by a crystal in a state ¢.with an interaction potential V

1
v o — o .
ko = OO B L E. tic_h, _ I

¢k—‘>‘ ‘e

VW o

Particle == h,0r = ELok Crystal == H,0o = E,0q

Vir) = Z’Ui(r —7;)

1

gbk gba - Homogeneous solution (V =0)

We need a solution for the scattering from a crystal with an “ensemble” of states
(e.g. thermal vibrations, defect clusters)

QbC"r’ystal :an¢a where (., = ¢’
o

o — —E,




Coherent Wave Scattering from An Ensemble of States

This problem has been solved elegantly within the theory of the Coherent Wave by Lax*

and more recently by Dederichs™ through determining that part of the scattered wave

Vi ofroma crystal with an ensemble of states that is fully coherent with (i.e. interferes with)
the incident wave qbk Performing the interference experiment and averaging < > over states:

I=<|p+Vpol’> = < dpon+ Viatk + O Vha + Vg o Ura >

After (for convenience) adding and subtracting the term < \IJZ o o< \Pk’a >, we get:

I=¢r0nt < Vo> +0, <Wpo>+<Wp Vro>+

1<V >< Vo> — <V, >< U o >}
where ¢k is not affected by the crystal < > ensemble averaging. This leads to:

I= +

This produces a factor containing < W k.o > thatinterferes with @}, and an additional
term that is the well known form of a fluctuation term that is not absolutely coherent with qbk

R T e

*M. Lax, Rev. Mod. Phys. 23, 287 (1951); P.H. Dederichs, Solid State Physics 27,135 (1972). e QLK.
“RIDGE
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Calculation of the Huang Scattering Term Using the Dipole Force Tensor*

The dipole-force tensor with the Fourier transformed elastic Green function provide a closed
form expression for the so-called Huang scattering amplitude

S s e~ h 2 &
lh'S(Q)|2=l(hi/Vc)Ginanqmlz' (4) <|h'S(Q)I2)=<_> Z Yillis (9)
. - - . d d q ‘. =l
Summation over repeated indices is assumed an where () denotes the average over cubic-equivalent
G = 1 O;n €ién orientations and
‘"—qz C44+de2 - (C“ +de§)(C44+def,) =-'-(Tr T“)z
Cyy+C
—44___~12
C“+C12)/ [1+ <C44+dek>e ] » © =§Z Ty = Ty, (10)
i>
where ¢;=¢;/|q|,d=C,, = C;; - 2C,, and the C’s __._1_ Z (T, + T
are the elastic constants. The dipole-force tensor 2 =7 41
of a spherical defect cluster is isotropic* and is
given in terms of the strength P, of the cluster by and where
P =P (6) Tyy= (hy / Ve, (11)
For dislocation loops® the force tensor is with k,=h,/|R| and g,,=¢2G,;. Similarly,
an= (ClzTrQnm+dan)6nm+2C44Qnm’ (7) m =%(TI'P )2
where [not to be confused with ( AR), in Eq. (1)
[ p in Eq. (1)] 7= GZ(p’m ¥, (12)
Qnm= %(Fnbm+Fmbn)’ (8) n>m
- - 2
T3 =-3_ Z an2 ’

n>m

*B.C. Larson and W. Schmatz, Phys. Stat. Sol. (b), 99, 267 (1980)
P.H.Dederichs, J. Phys. F: Metal Phys., 3, 471 (1973)
P.H.Dederichs, Phys.Rev. B4,1041 (1971)




Separation of Bragg and Defect Diffuse Scattering

For the kinematic case the total scattering is given by:

2

do(K)
d€2

1 f ()| AK)] = ‘Zcﬁ-(K)a’K"‘l

For r, = perfiect lattice sites mm) Bragg Scattering

For r, = distorted lattice sites mm)  Fluctuation or Diffuse Scattering




Single Defect Approximation for Diffuse Scattering

For randomly distributed defects (or clusters) with static Debye-
Waller factor given by,*

LK) = cZ[l cos(Kes(r,)] = cz

The diffuse scatterlng in the so-called “Slngle Defect
Approximation” results is given by,

. =

K-s(r )

ds2 Sum over atoms ! Sum over atoms in distorted
in defect cluster lattice surrounding cluster

|:dG(K):| _ zrfd iHe r iq°rJd 4 Eref;e_L(K)eiq.ri [eiK'S(ri) _
Diffuse

1]

This is a fundamental result discussed in more detail by Dederichs
*P.H.Dederichs, Phys.Rev. B4,1041 (1971)




