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Data Aggregation |SRCS 2008

¢ There are different yet similar definitions:

+ Ability to provide global information for purposes of network
management and user services.

¢ A set of functions that provide components of a distributed
system access to global information.

¢ Reasons to do Data Aggregation (DA)

¢ To coordinate tasks.

¢ The need for Node/component duplication for higher
performance.

¢ The need for redundancy for higher fault tolerance.



Data Aggregation, Cont. |SRCS 2008

¢ DA has gone by other names:

Data Fusion
Approximate Agreement
Consensus

¢ Distributed Agreement

*® o o

o Herein these phrases are used interchangeably.



Data Aggregation, Cont. |SRCS 2008

¢ Some specific examples:

Clock synchronization

Network size

Load balancing

Dissimilar (multiversion) software or hardware
Incongruent input of numerical data

Target trajectory
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Some Other/Recent Examples |SRCS 2008

Attitude alignment
Fish swarming
Bird flocking
Rendezvous
Consensus

Data Fusion



Examples lSRCS 2008

Attitude alignment: among spacecrafts



Examples, Cont. ISKCS 2008

Fish swarming: Cruising together or move in a pattern or direction
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Flocking: To move or travel in a group, e.g. in V formation
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Rendezvous: To reach a desired destination (time or place) within a small
time interval of each other
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Examples, Cont. |S§S 2008

Consensus: Distributed command and control
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Examples, Cont. lSKCS 2008

Data fusion: To collect and diffuse data
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What do these examples have in common? |SRCS 2008

Attitude alignment

_ _ ¢ Local/global coordination
Bird flocking
ﬁ ¢ Processes/agents
Rendezvous ¢ Network topology
Consensus ¢ Gradual convergence
¢ Synchrony

Data aggregation
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Data Aggregation, Cont. 'SRCS 2008

¢ General Scenario

¢
¢

Each node in the network holds a value.
Nodes exchange values to decide on values.

¢ Agreement conditions:

¢

Agreement: The decided values, one value by each node,
are within a predefine tolerance of each other.

Validity: The decided values are within the range of initial
values held by non-faulty nodes.
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A Round of Communication

¢ Agreement is reached executing multiple rounds.

¢ Each round consists of:

1.

2.

3.

Broadcast: Each node broadcasts its value to others.
Collect: Each node forms a multiset of values.
Filter: Select values to vote with.

Average: Average the selected values to vote.
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Two major evolutions |SRCS 2008

¢ Static networks

¢ Multiprocessor/multiprocessing systems
¢ Mostly concentrated on Fully Connected Networks (FCN)

o Small scale critical systems: power plants, aircrafts,
automobiles

¢ Distributed Networks
o Limited focus on Partially Connected Networks (PCN)
o Large scale distributed systems (Internet)

¢ Mobile/Adhoc networks

¢ Include both FCN and PCN

¢ Growing PCN applications: tactical military operations,
tracking endangered species, Unmanned Autonomous
Vehicles (UAV), etc.
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Fully Connected Networks lSR\CS 2008

Most agreement algorithms are devised for FCNs.
Full exchange of values in a round is immediate.
Diameter of values shrinks in each round (single-step).

Agreement is reached gradually by shrinking diameter in
each round.
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How to achieve AA conditions 'SRCS 2008

¢ Three general approaches:

¢

4

MSR algorithms. Remove the extreme-end values.

Egocentric algorithms. Replace the extreme-end values
with your own value.

Egophobic algorithms. Replace the extreme-end values
with your own plus a predefined threshold.
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MSR: Remove the extreme-end values 'SRCS 2008

¢ Example:

Assume 5 nodes with values in the range: 0...1

4 of the nodes posses the values: <0,0,1,1,>

The one faulty node (£=1) behaves asymmetrically.
Use fault tolerant mean function.

® 6 ¢ o

¢ Case 1: Assume, the faulty node transmits a value outside of

the range.
O]O 1 1[1.5 -1]0 0 1[1
011 > (0+1+1)/3 =0.66 001 ->(0+0+1)/3=0.33

Average is convergent [(0.66-0.33) < (1-0)] & valid.
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MSR: Remove the extreme-end values, Cont. 'SRCS 2008

¢ Example, Cont.:

¢ Case 2: Assume, the faulty node transmits a value within the
range.

O]O 0.5 1[1 O]O 0.9 1[1

0 051 - (0+0.5+1)/3=0.5]0 09 1 > (0+0.9+1)/3=0.63

Average is convergent [(0.63-0.5) < (1-0)] & valid.
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MSR Algorithms |SRCS 2008

¢ MBSR algorithms can handle the following fault modes:

¢ Benign (5)
¢ Symmetric ()
¢ Asymmetric (a)

¢ Thus:t=a+s+b
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MSR Algorithms ISRCS 2008

¢ The voting function:

F(V)=mean[Sel (Red"(V))]

where

¢ =(a+s), maximum number of erroneous values

Red® = The subsequence M remaining after removing
the 7 extreme values
Sel  =Thesubsequence S of size o, after selecting o

(o}

elements from M
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Example ISRCS 2008
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Some selection functions
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® & 6 ¢ o o

Fau
Fau
Fau

tTo
tTo
tTo

erant Midpoint
erant Mean
erant Optimal

Mixed Mode Optimal
Binary MSR
Spanning MSR
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MSR Performance for FCN ISRCS 2008

N>3a+2s+b+1

V=N-b

r>2a+S

7, = the minimum distance between any two elements
of S which guarantees that the distance between th e
correspond ing elements of M is at least a.
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Partially Connected Networks lSRCS 2008

o Partially Connected Networks (PCN)

¢

L 4

Agreement is not single-step.

Number of exchanges (rounds) to reach agreement depends
on distribution of values and density of connectivities.

Each node is aware of its immediate neighbors only.

Most realistic networks are partially connected.
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Partially Connected Networks |SRCS 2008

¢ Research is not matured vyet.
+ No unified approach to convergence time/rate
+ No consideration of hybrid fault model.

¢ Sporadic research about the criteria on topology affecting
convergence time/rate.
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Objectives & Approach |SRCS 2008

¢ Objectives:

¢

L 4

To achieve AA conditions in a PCN.

To achieve the conditions needed for a PCN to reach AA
conditions.

To show the number of rounds needed to reach a single
network-convergence.

To obtain the asymptotic stationary-convergence.

To form a basis for future research.
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Objectives & Approach, Cont. |SRCS 2008

¢ Approach:

¢

L 4

¢

Exploit properties of Markov Models (Markov Chains).
Exploit convergence in a fixed adhoc network.

Exploit convergence in a fixed adhoc network in the
presence of omission faults.
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Definitions, Cont. |SRCS 2008

¢ Eigenvector and eigenvalue:
¢ X is an eigenvector of a matrix M if: Mx = Ax.

¢ JAis a scalar value and is the eigenvalue corresponding to the
eigenvector x.

¢ A matrix of size n x nhas n eigenvalues.

+ In a stochastic matrix with non-zero diagonal values, for each A:

-1 < A<=1.
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Markov Chain Example |SRCS 2008

0.2

0.5

0z 08 0

Hoz[o,l,oj,o,z] F=(04 0 0§
05 05 0

31



Markov Chain Example, Cont. lSRCS 2008

¢ Probability of being in the next state:

0.2

1

0.5

02 08 O
[1'=T]°P=[0.10.7,02] 04 0 0.6|=[0.4,0.180.42]
05 05 0
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Markov Chain Example, Cont. 'SRCS 2008

o Probability of being in a state in two steps:
HZ :HlF):HO PP:HO P2

o Probability of being in a state in s steps:

HS:HOPS
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Markov Chain Example, Cont. ISRCS 2008

¢ For this example: 02

1

0.5
036 016 048 [0.35 0.40 0.26]
P> =[0.38 0.62 0.00 P 1036 041 023
030 040 0.30] 035 041 0.24
(0.35 0.40 0.24] (0.35 0.40 0.24]
P®=10.35 0.40 0.24 P°=10.35 0.40 0.24
035 040 0.24 035 040 024
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Convergence Characteristics of Transition Matrix 'SRCS 2008

¢ The sum of every row is 1.

¢ A transition matrix is stable when multiplying it by itself
produces the same matrix.

¢ In a stable matrix all rows are the same.

¢ A transition matrix of a corresponding Markov Chain when
raised sufficient number of times becomes stable if:

¢ The Markov Chain is irreducible.
¢ The Markov Chain is aperiodic.
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Network Model Assumptions 'SRCS 2008

Network is partially connected.

Network is strongly connected.

Each node is capable of broadcasting its value to its
neighbors.

Communication is synchronous.

Links are bidirectional.
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Exploiting Markov Chains to Achieve Convergence 'SRCS 2008

Example: Chordal Ring

2 r 8

R

[1/5 1/5 1/5 0 0 0 1/5 1/57]
1/5 1/5 1/5 1/5 O 0 0 1/5
1/5 1/5 1/5 1/5 1/5 O 0 0

0 1/5 1/5 1/5 1/5 1/5 O 0
0 0 1/5 1/5 1/5 1/5 1/5 O
0 0 0 1/5 1/5 1/5 1/5 1/5
1/5 0 0 0 1/5 1/5 1/5 1/5
1/5 1/5 0 0 0 1/5 1/5 1/5

V, =[1,2,3,4,5,6,7 8] A=
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Chordal Ring, Cont. |SRCS 2008

¢ The voted values after one round of exchange:

V, =V, A

¢ The voted values after two rounds of voting:

V, =V, A?

¢ After 15 rounds of voting:

V. =V, A
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Chordal Ring, Cont.
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0.20
0.16
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0.08
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| 0.16

0.16
0.20
0.16
0.12
0.08
0.08
0.08
0.12

0.12
0.16
0.20
0.16
0.12
0.08
0.08
0.08

0.08
0.12
0.16
0.20
0.16
0.12
0.08
0.08

0.08
0.08
0.12
0.16
0.20
0.16
0.12
0.08

0.08
0.08
0.08
0.12
0.16
0.20
0.16
0.12

0.12
0.08
0.08
0.08
0.12
0.16
0.20
0.16

0.16
0.12
0.08
0.08
0.08
0.12
0.16
0.20

V, =V, A’ =[4.20,3.92,3.96,4.32,4.68,5.05,5.08,4.80]
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Chordal Ring, Cont.
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0.125
0.125
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V, =V, A® =[4.54.545454545454.5]
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Convergence in PCN |SRCS 2008

¢ What does convergence mean in PCN?
¢ When diameter of values shrinks in a round.

¢ Convergence occurs when either of following occurs:

¢ Either of extreme-end values disappears in a round.
¢ Both extreme-end values disappear in a round.
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Convergence in PCN, Cont. |SRCS 2008

¢ Convergence takes place in phases:

¢ Phase. A number of rounds in which a convergence occurs.

o Multiple phases are needed for stationary-convergence.
¢ Each phase causes a shrink in diameter.

¢ Multiple phases cause agreement within &,
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Convergence in PCN, Cont. 'SRCS 2008

¢ Number of rounds in a phase is reduced when:

¢ Number of extreme-end values is low.
¢ Extreme-end and none extreme-end values are neighbored.

o Number of rounds in a phase is increased when:

¢ Number of extreme-end values is high.
¢ Extreme-end values in each set are packed together.

o Number of rounds to convergence is highest when:

¢ Number of both extreme-end values are highest and equal
to each other (or almost equal).

¢ Extreme-end values in each set are packed tightly.
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Convergence in PCN, Cont. |SRCS 2008

o Number of rounds in a phase can not be greater than the
diameter m of the network.

¢ The effect of a value held by a node reaches the farthest
node due to A™.

¢ Of course, this occurs if the network is strongly connected.
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Convergence in PCN, Cont. 'SRCS 2008

More specifically, the maximum number of rounds in a
phase for strongly connected, aperiodic network is:

o H

Proof is by induction on the number of nodes Nin the
network.
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Number of rounds to stationary-convergence |SRCS 2008

¢

The number of rounds to reach the stationary-convergence is:

log, e +r-1

¢ is a small predefined tolerance value.
¢ Itis an indicator of how close the voted values are to each other.

r is the multiplicity of the second largest eigenvalue.

A is the magnitude of the second largest eigenvalue.
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Convergence rate |SRCS 2008

¢ The average convergence rate per round is:

1/k
c ZK cCe j
5(U)

¢ Kk isthe number of rounds to stationary-convergence.

¢ C is a constant value.
o It is difficult to obtain, as it depends on the topology.
¢ Therefore, a smaller ¢ provides a better convergence rate.

+ Note: in reality, a convergence may not happen in a round.
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Considering Omission Faults |SRCS 2008

¢ The previous discussion assumed the network topology
is the same from one round to another.

¢ In many applications this may not be a reality:

¢ Omissions can be common in wireless networks.

¢ Hence, the stochastic matrix can change from one round
to another.
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Definitions |SRCS 2008

G =The original network topology in fault free environmert.

n =The numberof verticesin G.

m = The diameterof G.

d = The maximumnode indegree of G.

A =The adjacency matrix corresponding to G.

G, = The topologyin round .

A = The adjacency matrix corresponding to G,.

d; = Theindegreeof nodei in a round.

D. = The diagonal matrix corresponding to G, ,
where for a node j, [D; ], =d,

(= (m/ﬂ
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Definitions, Cont. |SRCS 2008

¢ The stochastic matrix in round /is obtained as:

M; =D;"A
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Definitions, Cont. |SRCS 2008

V. = Multiset of values received in the current round by node I.
F(V;) =The voting function used by node i.
V. = The multiset of valuesin the entire network for round 1.

F (V,) = The voting function applied to the entire network for round i.

¢ Therefore, the voted values in round 4 are:

FV) =[FMV). FMVo) FV) =MV, = MM M, L, ..MV,
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Number of rounds to stationary-convergence |SRCS 2008

¢ The upper bound on the number of rounds to achieve
the stationary-convergence is:

14
log, (1-n(1/d)")
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Convergence in Chordal rings B'Qm

¢ Number of rounds in chordal rings of 29 order:

m=[n/4] r=[m/2] d=5

10
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g 100 0.7
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x

10 20 30 40 50

Number of nodes (n)
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Convergence in an arbitrary network & m

¢ Number of rounds in a network with:
m=5 ¢=3, d=5

Rounds to stationary-convergence

Number of nodes (n)
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Convergence in an arbitrary network |SRCS 2008

¢ Number of rounds in the same network, but when the
precision is increased:

m=5, /=3, d=5

]
S 440
o 400
S 360 |
S 320 ——0.1
&)
> 2807 —=—0.01
g o 0.001
% 160 0.0001
g 160 | 8 \ .
g 120 RN —— 0.00001
» 80 - N s
©
S 40 - Mﬂx\x\x
o 0 —
o O O O O O O O o o o
— N M < IO © M~ 00 O O

i

Number of nodes (n)
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Remarks lSRCS 2008

Network-diameter has a big effect on the number
rounds to reach the stationary-convergence.

The speed of convergence is highly dependent on the
distribution of values.

These examples considered the worst-case, i.e. every
phase takes the highest number of rounds.

If divergence prevention is needed, just a single phase
executed at regular times should be sufficient.
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Future research |SRCS 2008

To place a bound on the convergence rate,
To consider malicious faults,
To run simulation results against the theoretical results,

To consider node mobility.
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Questions?
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