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Data AggregationData Aggregation

There are different yet similar definitions:

Ability to provide global information for purposes of network 
management and user services.

A set of functions that provide components of a distributed 
system access to global information.

Reasons to do Data Aggregation (DA)

To coordinate tasks.
The need for Node/component duplication for higher 
performance.

The need for redundancy for higher fault tolerance.
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Data Aggregation, Cont.Data Aggregation, Cont.

DA has gone by other names:

Data Fusion
Approximate Agreement
Consensus 
Distributed Agreement

Herein these phrases are used interchangeably.
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Data Aggregation, Cont.Data Aggregation, Cont.

Some specific examples:

Clock synchronization
Network size
Load balancing
Dissimilar (multiversion) software or hardware
Incongruent input of numerical data
Target trajectory
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Some Other/Recent ExamplesSome Other/Recent Examples

Attitude alignment

Fish swarming

Bird flocking

Rendezvous

Consensus

Data Fusion
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ExamplesExamples

Attitude alignment:  among spacecrafts
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Examples, Cont.Examples, Cont.

Fish swarming: Cruising together or move in a pattern or direction
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Examples, Cont.Examples, Cont.

Flocking: To move or travel in a group, e.g. in V formation
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Examples, Cont.Examples, Cont.

Rendezvous: To reach a desired destination (time or place) within a small  
time interval of each other
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Examples, Cont.Examples, Cont.

Consensus: Distributed command and control
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Examples, Cont.Examples, Cont.

Data fusion: To collect and diffuse data
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What do these examples have in common?What do these examples have in common?

Attitude alignment

Fish swarming

Bird flocking

Rendezvous

Consensus

Data aggregation

Distributed control
Local/global coordination
Processes/agents
Network topology
Gradual convergence
Synchrony
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Data Aggregation, Cont.Data Aggregation, Cont.

General Scenario
Each node in the network holds a value.
Nodes exchange values to decide on values.

Agreement conditions:
Agreement: The decided values, one value by each node, 
are within a predefine tolerance of each other.

Validity: The decided values are within the range of initial 
values held by non-faulty nodes.
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A Round of CommunicationA Round of Communication

Agreement is reached executing multiple rounds.

Each round consists of:
1. Broadcast: Each node broadcasts its value to others.
2. Collect: Each node forms a multiset of values.
3. Filter: Select values to vote with.
4. Average: Average the selected values to vote.
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Two major evolutionsTwo major evolutions

Static networks

Multiprocessor/multiprocessing systems 
Mostly concentrated on Fully Connected Networks (FCN)
Small scale critical systems: power plants, aircrafts, 
automobiles

Distributed Networks
Limited focus on Partially Connected Networks (PCN)
Large scale distributed systems (Internet)

Mobile/Adhoc networks

Include both FCN and PCN
Growing PCN applications: tactical military operations, 
tracking endangered species, Unmanned Autonomous 
Vehicles (UAV), etc.
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Fully Connected NetworksFully Connected Networks

Most agreement algorithms are devised for FCNs.

Full exchange of values in a round is immediate.  

Diameter of values shrinks in each round (single-step).

Agreement is reached gradually by shrinking diameter in 
each round.
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How to achieve AA conditionsHow to achieve AA conditions

Three general approaches:

MSR algorithms: Remove the extreme-end values.

Egocentric algorithms: Replace the extreme-end values 
with your own value. 

Egophobic algorithms: Replace the extreme-end values 
with your own plus a predefined threshold.
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MSR: Remove the extremeMSR: Remove the extreme--end valuesend values

Example:
Assume 5  nodes with values in the range: 0…1
4 of the nodes posses the values: <0,0,1,1,>
The one faulty node (t=1)  behaves asymmetrically.
Use fault tolerant mean function.

Case 1: Assume, the faulty node transmits a value outside of 
the range.

0  0  1  1  1.5                -1  0  0  1  1 

0  1  1  (0+1+1)/3 = 0.66 0  0  1  (0+0+1)/3 = 0.33

Average is convergent [(0.66-0.33) < (1-0)] & valid.
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MSR: Remove the extremeMSR: Remove the extreme--end values, Cont.end values, Cont.

Example, Cont.:
Case 2: Assume, the faulty node transmits a value within the 
range.

0  0  0.5  1  1 0  0  0.9  1  1 

0  0.5  1   (0+0.5+1)/3=0.5 0  0.9  1   (0+0.9+1)/3=0.63

Average is convergent [(0.63-0.5) < (1-0)] & valid.
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MSR AlgorithmsMSR Algorithms

MSR algorithms can handle the following fault modes:

Benign (b)
Symmetric (s)
Asymmetric (a)

Thus: t = a + s + b
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MSR AlgorithmsMSR Algorithms

The voting function:
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ExampleExample
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Some selection functionsSome selection functions

Fault Tolerant Midpoint
Fault Tolerant Mean
Fault Tolerant Optimal
Mixed Mode Optimal 
Binary MSR 
Spanning MSR
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MSR Performance for FCNMSR Performance for FCN
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Partially Connected Networks Partially Connected Networks 

Partially Connected Networks (PCN)

Agreement is not single-step.

Number of exchanges (rounds) to reach agreement depends 
on distribution of values and density of connectivities.

Each node is aware of its immediate neighbors only.

Most realistic networks are partially connected.
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Partially Connected Networks Partially Connected Networks 

Research is not matured yet.

No unified approach to convergence time/rate

No consideration of hybrid fault model.

Sporadic research about the criteria on topology affecting 
convergence time/rate.
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Objectives & ApproachObjectives & Approach

Objectives:

To achieve AA conditions in a PCN.

To achieve the conditions needed for a PCN to reach AA 
conditions.

To show the number of rounds needed to reach a single 
network-convergence. 

To obtain the asymptotic stationary-convergence.

To form a basis for future research.
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Objectives & Approach, Cont.Objectives & Approach, Cont.

Approach:

Exploit properties of Markov Models (Markov Chains).

Exploit convergence in a fixed adhoc network.

Exploit convergence in a fixed adhoc network in the 
presence of omission faults. 
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Definitions, Cont.Definitions, Cont.

Eigenvector and eigenvalue:

x is an eigenvector of a matrix M if: Mx = λx.

λ is a scalar value and is the eigenvalue corresponding to the 
eigenvector x. 

A matrix of size n × n has n eigenvalues.

In a stochastic matrix with non-zero diagonal values, for each λ:

-1 < λ <= 1.
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Markov Chain ExampleMarkov Chain Example

∏ = ]2.0,7.0,1.0[0
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Markov Chain Example,Markov Chain Example, Cont.Cont.

[ ]42.0,18.0,4.0
05.05.0
6.004.0

08.02.0
]2.0,7.0,1.0[01 =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==∏ ∏ P

Probability of being in the next state:
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Markov Chain Example,Markov Chain Example, Cont.Cont.

∏∏ = ss P0

Probability of being in a state in two steps:

Probability of being in a state in s steps:

20012 PPPP ∏=∏=∏=∏
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Markov Chain Example, Cont.Markov Chain Example, Cont.
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Convergence Characteristics of Transition MatrixConvergence Characteristics of Transition Matrix

The sum of every row is 1.

A transition matrix is stable when multiplying it by itself 
produces the same matrix.

In a stable matrix all rows are the same.

A transition matrix of a corresponding Markov Chain when 
raised sufficient number of times becomes stable if:

The Markov Chain is irreducible.
The Markov Chain is aperiodic.
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Network Model AssumptionsNetwork Model Assumptions

Network is partially connected.

Network is strongly connected.

Each node is capable of broadcasting its value to its 
neighbors.

Communication is synchronous.

Links are bidirectional.
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Exploiting Markov Chains to Achieve ConvergenceExploiting Markov Chains to Achieve Convergence

Example: Chordal Ring

⎥
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0005/15/15/15/15/1
5/10005/15/15/15/1
5/15/10005/15/15/1

A[ ]8,7,6,5,4,3,2,10 =V
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ChordalChordal Ring,Ring, Cont.Cont.

AVV 01 =

2
02 AVV =

The voted values after one round of exchange:

The voted values after two rounds of voting:

After 15 rounds of voting:

15
015 AVV =
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ChordalChordal Ring,Ring, Cont.Cont.
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ChordalChordal Ring, Ring, Cont.Cont.
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Convergence in PCNConvergence in PCN

What does convergence mean in PCN?
When diameter of values shrinks in a round.

Convergence occurs when either of following occurs:

Either of extreme-end values disappears in a round.
Both extreme-end values disappear in a round.
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Convergence in PCN, Cont.Convergence in PCN, Cont.

Convergence takes place in phases:

Phase: A number of rounds in which a convergence occurs.

Multiple phases are needed for stationary-convergence.

Each phase causes a shrink in diameter.

Multiple phases cause agreement within ε.
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Convergence in PCN, Convergence in PCN, Cont.Cont.

Number of rounds in a phase is reduced when:

Number of extreme-end values is low.
Extreme-end and none extreme-end values are neighbored.

Number of rounds in a phase is increased when:

Number of extreme-end values is high.
Extreme-end values in each set are packed together.

Number of rounds to convergence is highest when:

Number of both extreme-end values are highest and equal 
to each other (or almost equal).
Extreme-end values in each set are packed tightly.
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Convergence in PCN, Convergence in PCN, Cont.Cont.

Number of rounds in a phase can not be greater than the 
diameter m of the network.

The effect of a value held by a node reaches the farthest 
node due to Am.

Of course, this occurs if the network is strongly connected.
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Convergence in PCN,Convergence in PCN, Cont.Cont.

More specifically, the maximum number of rounds in a 
phase for strongly connected, aperiodic network is:

Proof is by induction on the number of nodes N in the 
network.
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Number of rounds to stationaryNumber of rounds to stationary--convergenceconvergence

The number of rounds to reach the stationary-convergence is:

ε is a small predefined tolerance value.
It is an indicator of how close the voted values are to each other.

r is the multiplicity of the second largest eigenvalue.

λ is the magnitude of the second largest eigenvalue.

1log −+ rελ
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Convergence rateConvergence rate

The average convergence rate per round is:

k is the number of rounds to stationary-convergence.

c  is a constant value.
It is difficult to obtain, as it depends on the topology.
Therefore, a smaller ε provides a better convergence rate.

Note: in reality, a convergence may not happen in a round.

k
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Considering Omission FaultsConsidering Omission Faults

The previous discussion assumed the network topology 
is the same from one round to another.

In many applications this may not be a reality:

Omissions can be common in wireless networks.
Hence, the stochastic matrix can change from one round 
to another.
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Definitions,Definitions, Cont.Cont.

The stochastic matrix in round i is obtained as:

iii ADM 1−=
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Definitions,Definitions, Cont.Cont.

Therefore, the voted values in round k are:
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Number of rounds to stationaryNumber of rounds to stationary--convergenceconvergence

The upper bound on the number of rounds to achieve 
the stationary-convergence is:

))/1(1(log l

l

dn−ε
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Convergence in Convergence in ChordalChordal ringsrings

Number of rounds in chordal rings of 2nd order:
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Convergence in an arbitrary  networkConvergence in an arbitrary  network

Number of rounds in a network with:

5,3,5 === dm l
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Convergence in an arbitrary networkConvergence in an arbitrary network

Number of rounds in the same network, but when the 
precision is increased:
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RemarksRemarks

Network-diameter has a big effect on the number 
rounds to reach the stationary-convergence.

The speed of convergence is highly dependent on the 
distribution of values.

These examples considered the worst-case, i.e. every 
phase takes the highest number of rounds.

If divergence prevention is needed, just a single phase 
executed at regular times should be sufficient.
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Future researchFuture research

To place a bound on the convergence rate,

To consider malicious faults,

To run simulation results against the theoretical results,

To consider node mobility.
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Questions?



59

Toward Global Convergence in Toward Global Convergence in AdhocAdhoc
NetworksNetworks

Azad Azadmanesh, 
University of Nebraska - Omaha

azad@unomaha.edu (402) 554-3976


