
System-Level Algorithmic Concurrent Error 
Detection for Improved Resilience in Complex 

Control Systems

Juan J. Rodriguez-Andina
University of Vigo, Spain

September 9-10, 2008
Idaho Falls, Idaho



Outline

Introduction
Algorithmic CED
– Concept and features
– Design and validation

Application examples
– Image compression
– Scheduling

Conclusions



Introduction

Nanometer-scale CMOS circuits
– Requirements

• Lower VDD and power consumption
• Increasing complexity, higher performance

– Challenges
• Process variations
• New types of defects
• Increased susceptibility to disturbances

– Environmental (e.g., EMI)
– Operation-induced (e.g., VDD noise, T)



Introduction

Increased resilience
– Fault masking
– Fault control (needs detection)

New design and test techniques
– Minimize overhead and performance penalty
– Unrestricted types of faults
– Low level

• Clock and power distribution networks
• Disturbance-tolerant circuits
• Delay testing



Introduction

– Block level → heterogeneous and complex systems
• Low coverage, high overhead



Introduction

– System level → replication



Increased resilience
– Fault masking
– Fault control (needs detection)

New design and test techniques
– Minimize overhead and performance penalty
– Unrestricted types of faults
– Low level

• Clock and power distribution networks
• Disturbance-tolerant circuits
• Delay testing

– Block level → heterogeneous and complex systems
• Low coverage, high overhead

– System level → replication
– Checking individual output words

Introduction



Algorithmic CED

Independent post-processing
– Blocks of data

• Primary outputs (NO internal data)
• Target system unchanged

– Overhead: checker only
– Performance: no penalty

• Detection latency?
– External checker

• Pre-existing systems
• Several systems

– Independent of architecture / 
implementation



Applicability
– Arithmetic operations → many possible mathematical 

checks
– Repetitive execution of basic sequences (algorithm 

iterations)
• Few specialized pieces of hardware
• High probability of error spreading

Complex control systems: control unit + data path
– Fault → high probability of wrong (intermediate) result
– Resource reusing + wrong data → more wrong data

• Similar to multiple faults
– Many wrong individual results → (math) properties 

degraded
– Even in the case of transient faults

Algorithmic CED



Design and Validation

No generic design approach
Find suitable properties
– Algorithm, not architecture
– Unrestricted types of faults
– Characterizing fault free / faulty behavior

• Fault injection (simulation / emulation)
• Also for validation



Design and Validation

Fault simulation
– Different processing

• Blocks of data
• Post-processing

– Limited practical 
feasibility
• Processing power
• Time

Fault-free description

Faulty descriptions



FPGA-based fault emulation

– SEUs, stuck-at

Design and Validation



Design and Validation

FPGA-based fault emulation



Design and Validation

FPGA-based fault emulation



Design and Validation

FPGA-based fault emulation

Fault-free description

Faulty bitstream

SYNTHESIS

Fault-free bitstream

Logic Analyzer

Pattern Generator

EXTERNAL RAM

INJECTION

CONTROL

BOARD
FPGA



Design and Validation

FPGA-based fault emulation



Design and Validation

FPGA-based fault emulation
– Transient and intermittent faults

E
A
B
C

D
MUX

LVGVS F
TC

G



Application Examples

Wavelet-based image compression
– L/H-pass filtering steps + subsampling
– Reprocessing DC → next level



Application Examples

Wavelet-based image compression
– Repetitive use of processing blocks
– Coefficients are reused in subsequent levels



Application Examples

Wavelet-based image compression
– Statistical distribution of AC coefficients



Application Examples

Wavelet-based image compression
– Checker

• 31.5% overhead
• 2.6 ms for a 1024x1024-pixel image (nearly 400 fps)
• Usual frame rate 24 fps
• NO DETECTION LATENCY IN PRACTICE

– Fault coverage ≈ 95% (stuck-at)
• Three images (test patterns)
• No special textures



Application Examples

Scheduling
– High-performance routers

• Software solutions at the protocol level

– Maximal matching scheduling algorithms
• PHM
• iSLIP

– Iterative round-robin algorithm
– Request-grant-access

– Permanent faults
• “Fair” service



Application Examples

Scheduling
– iSLIP



Application Examples

Scheduling
– iSLIP

• Traffic vs. probability of request / grant

�(i, j), λij = P(Rij =1)= P(Gij =1)
• Computation of density functions of 2-D probabilities
• Not all data are sampled
• Microcontroller (usually available)

– HW checker under development
• Detection latency

– Statistically representative amount of data
– Digital filtering techniques → faster estimation



Application Examples

Scheduling
– iSLIP

• 8x8 switch, 5k data samples
• Poissonian traffic, rate 0.99, non-bursty, uniform

Fault-free Stuck-at fault in input queue



Application Examples

Scheduling
– iSLIP

• 8x8 switch, 5k data samples
• Poissonian traffic, rate 0.99, non-bursty, non-uniform

Stuck-at fault in grant arbiterFault-free



Application Examples

Scheduling
– iSLIP

• 8x8 switch, 5k data samples
• Poissonian traffic, rate 0.99, bursty, uniform

Stuck-at fault in grant arbiterFault-free



Conclusion

Efficient CED using selective redundancy
– High coverage
– Low latency and overhead
– No performance penalty

Complex control systems
– Wide application range

External checker, invariant output properties
– Existing systems, several systems



System-Level Algorithmic Concurrent Error 
Detection for Improved Resilience in Complex 

Control Systems

+34 986 812 094jjrdguez@uvigo.esJuan J. Rodriguez-Andina


