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e Individually, these subjects are a mess.

» Together, a nightmare.

* “High impact” scientific literature has persistent errors
and confusion. (Important symptom of “complexity.”)

For (lots) more slides see
http://www.cds.caltech.edu/~doyle/NetME101/AllDoylePPTFiles.zip



Complex
Network
Architecture

Connections to resilience, security?

o Complex networks have bewildering security
and management challenges

* Architecture must better facilitate security
e Security must become more “architectural”



Essential ideas: Architecture

Robust Constraints

yet that

fragile deconstrain
Question Answer

Case studies?



Human systems?

Important

Great for anecdotes because of broad familiarity
But hard to formalize. Why?

Gratuitously complex and fragile

Poorly understood “architectures” from
metabolism to inflammation to brains to society

Difficult to separate hard tradeoffs from frozen
evolutionary accidents

Where do we look for “good” examples?



Cyber-physical networks?

Water

Waste

Food :‘AII e?fampl_es of

bad” architectures:

Power .

T . e Unsustainable
ransportation e Hard to fix

Healthcare

Finance

Where do we look for “good” examples?



Essential ideas: Architecture

Robust Constraints

yet that

fragile deconstrain
Question Answer

Simplest case studies

Internet Bacteria



Successful architectures
Robust, evolvable
Universal, foundational
Accessible, familiar
Unresolved challenges
New theoretical frameworks

Much easier than flies,
oceans, humans

Boringly retro?

Simplest case studies

Internet Bacteria



e Universal, foundational




e Universal, foundational
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Essential ideas: Architecture

Robust
yet
fragile*

Question

* Carlson



Question: Human complexity

Robust Yet Fragile

Obesity and diabetes
Parasites, infection

Efficient, flexible metabolism
Rich microbial symbionts
Immune systems Inflammation, Auto-Im.
Cancer

Epidemics, war, ...

~ Catastrophic failures

Regeneration & renewal
=] Complex societies

-----

# Advanced technologies

© % OO ® @



Mechanism?

Robust Yet Fragile
© Efficient, flexible metabolism ® Obesity and diabetes
© Fat accumulation @ Fat accumulation
© Insulin resistance @ Insulin resistance
Fluctuating Static

energy energy



Implications/

Robust Generalizations  Yet Fragile
© Efficient, flexible metabolism @  Obesity and diabetes

© Rich microbial symbionts @® Parasites, infection

©  Immune systems ® Inflammation, Auto-Im.
© Regeneration & renewal ®  Cancer

Complex societies 2 Epidemics, war, ...

#  Advanced technologies é Catastrophic failures

 Fragility = Hijacking, side effects, unintended...
of mechanisms evolved for robustness

« Easier to create robustness than to avoid fragility
 Math: New robust/fragile conservation laws

« Minimal functionality and demos are simple, easy
« Complexity Is driven by control, robust/fragile



[a system] can have

[a property] robus_t for Fragile
[a set of perturbations]

Yet be fragile for

[a different property]

Or [a different perturbation]

Robust yet fragile = fragile robustness



a system] can have Apply recursively
[a property] robust for
a set of perturbations]

\
Qe(\\J
\a@

[ property] = robust for _
[one set of perturbations] | Tragile for

| property] or

| set of perturbations] [a perturbation]

Robust yet fragile = fragile robustness



[a system] can have
[a property] robust for

_ Fragile
[a set of perturbations]

» Some fragilities are inevitable

IN robust complex systems.
PIexX Sy Robust

 But If robustness/fragility are conserved, what does it
mean for a system to be robust or fragile?



8m%g%i

Fragile

» Some fragilities are inevitable

In robust complex systems. Robust

 But If robustness/fragility are conserved, what does it
mean for a system to be robust or fragile?

* Robust systems systematically manage this tradeoff.
e Fragile systems waste robustness.



Definition: Resilience
(Www.wowwiki.com)

e Resilience Is a character attribute that reduces the
chance to receive critical strikes or spell critical
strikes, reduces the effect of mana drain spells...

» Characters have no innate resilience. It can only be
gained through external sources, e.g.
— equipment,
— elixirs,
— enchantments,
— gems, and
— some spell effects



Definition: Resilience?

 Resilient systems effectively manage
fragility tradeoffs?

e How does architecture facilitate resilience?



Robust yet fragile

Biology (and advanced tech) show extremes
* Robust Yet Fragile

e Simplicity and complexity

e Unity and diversity

e Evolvable and frozen

What makes this possible and/ or inevitable?

Architecture (= constraints)

Let’s dig deeper.



Why should we care here?

 Need automation/networking for sustainability
* For better or worse (or both)

e Security will become more critical

« 3 fundamental but poorly understood tradeoffs

Architecture (= constraints)



Essential ideas: Architecture

Constraints
that
deconstrain*

Answer

* Gerhart and Kirschner



Essential ideas: Architecture

Constraints
that

deconstrain

Answer

Bad architecture:
Things are broken and you can’t fix it

Good architecture:
Things work and you don’t even notice



Hard limits.

No networks TheoretICa|
frameworks
Assume e Thermodynamics (Carnot)
different « Communications (Shannon)
architectures + Control (Bode)
.. e Computation (Turing/Godel)
a priori.

New unifications are encouraging,
but not yet accessible



Cyber Physical

Thermodynamics e Thermodynamics
Communications « Communications
Control e Control
Computation e Computation

Internet Bacteria
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The physical pathway
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EAppllcationSB

max Ui (x)
Control - |
Relay/MUX subj to  Rx <c(p)
Xe X

SResources 3
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Fixed and universal

max 2 Ui(x)

Control .
Relay/MUX  subjto Rx <c(p)

Xe X



econstraine

Constraints max 2 Ui (x)
that |
deconstrain

subjto Rx <c(p)
Xe X

econstraine cerme

Kirschner
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Recursive control structure

Application
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Recursive control structure
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Recursive control structure
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Constraints that deconstrain

econstrai

min{ [(IR%—¢*+|Rx [ ) |

Xx=argmaxL(v,p), p=Rx-c

= X, =argmax L (v,p)

econstrai

Generalizations
e Optimization
* Optimal control
 Robust control
o Game theory
* Network coding



Fragilities

econstraine
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All are forms W
of “hijacking™ econstraine




What Is the Application
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Cyber-physical networks?

Water

\Waste All examples of
Food bad architectures:
Power e Unsustainable
Transportation » Hard fo fix
H_ealthcare Constraints:

Finance « Burning fossil fuels

e Individual vehicles
e Lots of plastic

e Standing armies

* Monocultures

e efc etc



Biology versus the Internet

Similarities

« Evolvable architecture

e Robust yet fragile
 Layering, modularity

* Hourglass with bowties
e Dynamics

e Feedback
 Distributed/decentralized

* Not scale-free, edge-of-chaos, self-
organized criticality, etc

Differences

Metabolism

Materials and energy
Autocatalytic feedback
Feedback complexity

Development and
regeneration

>}B’ years of evolution

>4B



Biology versus the Internet

Similarities

« Evolvable architecture

* Robust yet fragile
 Layering, modularity
* Hourglass with bowties
e Dynamics

* Feedback
 Distributed/decentralized

* Not scale-free, edge-of-chaos, self-
organized criticality, etc

Differences

e Metabolism

e Materials and energy

e Autocatalytic feedback
* Feedback complexity

* Development and
regeneration

e >3B years of evolution



Control of the Internet

Packets
control

packets



signaling
gene expression
metabolism
lineage

Biological
pathways



signaling
gene expression
metabolism
lineage

control

energy
More

complex
feedback

materials



signaling
gene expression
metabolism
lineage
What theory Is relevant to

these more complex
feedback systems?

control _—

energy

More

complex
feedback

materials
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Huge Huge
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The
bowtie
architectu

Need a more
coherent
cartoon to
visualize how
these fit
together.

Flow/error

The
hourglass
architectur
e of the
cell.

Flow/error

Flow/error
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If we drew the feedback loops the
diagram would be unreadable.

CA

ﬂﬂﬂﬂﬂﬂﬂﬂ



' Mass & o
Reaction
Energy
flux
Balance |
Stoichiometry
matrix




Reaction |

| | Balance

o
1 Regulation of enzyme levels by
transcription/translation/degradation
4

v

ey - i

level



(GO X su(y
(G1P> dt
' Mass & -
GeP Reaction
i 4 =| Energy
Q‘ Balance
N cRD P\ N B

¢ Error/flow

‘& LY
(36~ ee

N &
: b A

-~
-_ -
o -
-——_——_——_—

Allosteric regulation
of enzymes



' Mass &

Sv(x) =|Energy {
 Balance

Reaction
flux

Reaction

Error/flow

| evel




Reactions

-
o)
o
—
L
S
O
LL

Protein level




Reactions
P

Layered

architecture Protein level




Reactions

Flow/error

Protein level

Reactions
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RNA level

Reactions
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DNA level
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Diverse Reactions

DNA DNA DNA
Diverse Genomes



Diverse Reactions
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More complete picture
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This is just charging and discharging

consumption E=rSEe&e=
= discharging

charging



ATP supplies
energy to all Rest of cell
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(A*P) Flow/error

AMP level Protein lgvdl

RNA
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@ Flow/error

AMP level Protein level
Lots of RNA
waysS to DNA

draw this.
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Fragility example: Viruses

Reactions
Viral Protein level
proteins
Reactions

Viruses exploit the universal Flow

bp_wtle/hourglass str_ucture to RNA level
hijack the cell machinery.

Reactions
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senes DNA level
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Application
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——

System

Hardware %
Instructions

Loagical

Physical

What are the additional layers?

?

* Where is the power supply?
* Where are the designs and
processes that produce the
chips, PCs, routers, etc?
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universal
carriers

fan-in fan-out
of diverse . of diverse
Inputs _ outputs
Bowties: flows
within layers
Diverse
function Essential ideas
Universal
Control Robust Constraints
Diverse yet that
components fragile deconstrain




fan-in fan-out
of diverse of diverse

Inputs \ outputs

flalr:girgi Highly robust
< .«Diverse

/ e Evolvable
e Deconstrained

Diverse Robust Constraints that
components yet fragile deconstrain




Universal
Control

universal
carriers

\

Highly fragile
e Universal

e Frozen
 Constrained

Robust
yet fragile

Constraints that
deconstrain




universal
carriers

fan-in fan-out
of diverse . of diverse
Inputs _ outputs
Bowties: flows
within layers
Diverse
function Essential ideas
Universal
Control Robust Constraints
Diverse yet that
components fragile deconstrain




What theory Is relevant to
these more complex
feedback systems?

metabolism
lineage

control More
energy complex
materials feedback



[a system] can have

[a property] robus_t for Fragile
[a set of perturbations]

Yet be fragile for

[a different property]

Or [a different perturbation]

Robust yet fragile = fragile robustness



a system] can have Apply recursively
[a property] robust for
a set of perturbations]

\
Qe(\\J
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[ property] = robust for _
[one set of perturbations] | Tragile for

| property] or

| set of perturbations] [a perturbation]

Robust yet fragile = fragile robustness



[a system] can have
[a property] robust for

_ Fragile
[a set of perturbations]

» Some fragilities are inevitable

IN robust complex systems.
PIexX Sy Robust

 But If robustness/fragility are conserved, what does it
mean for a system to be robust or fragile?



8m%g%i

Fragile

» Some fragilities are inevitable

In robust complex systems. Robust

 But If robustness/fragility are conserved, what does it
mean for a system to be robust or fragile?

* Robust systems systematically manage this tradeoff.
e Fragile systems waste robustness.
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Caution: mixed cartoon
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[a system] can have

[a property] robus_t for Fragile
[a set of perturbations]

Yet be fragile for

[a different property]

Or [a different perturbation]

Robust yet fragile = fragile robustness
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The plant can make
this tradeoff worse.
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Small z is bad
(oscillations and crashes)
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K . y
7 =—— Correctly predicts conditions
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X (jo) Hard limits

[Infs (jo)fto= [ n
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Small Large
Robust | Simple Organized

Fragile Ghaseritical| Trreducible

Taxonomy covers standard usages
Unified picture
Can make the definitions more precise

Have “hand crafted” theorems in every major complexity
class (but lack a unified theory)
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End

What follows are additional details on
the glycolysis fragility example.
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Autocatalytic

Robust

Yet Fragile

Strong inhibition

Enzyme complexity,
Oscillations

Low autocatalysis

High reaction rates

Inefficiency,
metabolic load
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