
Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia

A Lightweight Software Control System
for Cyber Awareness and Security

Michele Co, Clark L. Coleman, Jack W. Davidson,
Sudeep Ghosh, Jason D. Hiser, John C. Knight and

Anh Nguyen-Tuong

University of VirginiaUniversity of Virginia

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 22

The ProblemThe Problem

• Modern society critical relies on properly
functioning software
– Transportation, power distribution, communication,

water and sanitation systems
• Software is not and cannot be made perfect

– Rigorous testing/validation still yield flawed software
– Software bugs/vulnerabilities are a growing problem

• A method for improving the resilience of
software is needed

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 33

Software Dynamic Translation (SDT)Software Dynamic Translation (SDT)

• The programmatic modification of a
running program’s binary instructions

Software layer mediates program
execution by modifying (translating)
instructions before they execute on host
CPU

Application Binary

Dynamic Translator

Operating System

CPU

If built correctly, SDT systems are reliable,
transparent, low memory overhead, very fast and

act as a control system

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 44

OverviewOverview

• Introduction
• Overview
• Software Dynamic Translation

– Strata
• Summary

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 55

Strata Control System FrameworkStrata Control System Framework

Binary RewriterApplication
Code

(Binary)

Strata Software
Dynamic Translator

Library

Control Logic
Library

Sensor
&

Actuator
Database

Build Time Run Time

Software Dynamic Translator
(Strata)

Translated A
pplication C

ode

Fragment Cache

Control
Logic

Original
Application

Code

Application-
spectifc Goals

&
Response

Actions

Goals &
Response

Actions

Controlled Application

Actuators

Sensors

Presenter
Presentation Notes
Explain what a fragment is!

Explain what a fragment is!

Explain what a fragment is!

Explain what a fragment is!

Explain what a fragment is!

Explain what a fragment is!

Explain what a fragment is!

Explain what a fragment is!

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 66

Strata Virtual MachineStrata Virtual Machine

Application Binary

Strata

Context
Capture

Context
Switch Next PC

Translate
Decode
Fetch

New
Fragment

Finished?

Dynamic Translator

Cached?
New
PC

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 77

Strata Virtual MachineStrata Virtual Machine

Context
Capture

Context
Switch Next PC

Translate
Decode
Fetch

New
Fragment

Finished?

Dynamic Translator

Cached?
New
PC

Application Binary

System Start
(first PC)

Fragment Cache

Direct Conditional branch
Trampoline

The Takeaway:
• Strata’s fragment construction process for basic blocks ending in conditional branches
• Fragment linking avoids excess overhead related to reentering the translator

Non-control instruction

PC

Presenter
Presentation Notes
Mc2zk: changed first bullet of The Takeaway to be more direct.

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 88

This takes FOREVER, right?This takes FOREVER, right?
UltraSPARCUltraSPARC--IIiIIi ResultsResults

0.8

0.9

1.0

1.1

1.2

1.3

1.4

16
8.w

up
wise

17
1.s

wim
17

2.m
gri

d
17

3.a
pp

lu
17

7.m
es

a
17

8.g
alg

el
17

9.a
rt

18
3.e

qu
ak

e
18

7.f
ac

ere
c

18
8.a

mmp
18

9.l
uc

as
19

1.f
ma3

d
20

0.s
ixt

rac
k

30
1.a

ps
i

16
4.g

zip
17

5.v
pr

17
6.g

cc
18

1.m
cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k
25

4.g
ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf av
e

int
 av

e
fp

av
e

R
un

tim
e

(n
or

m
al

iz
ed

)

Evaluating Fragment Construction Policies for SDT Systems in VEE’06

Average overhead: 4% integer benchmarks: 8%
Worst-case overhead, most indirect branches: 33%

Presenter
Presentation Notes
Translation time not so bad..

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 99

Strata as a Control SystemStrata as a Control System

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 1010

SummarySummary

• Software protections critical infrastructures
and needs to be monitored

• Software Dynamic Translation provides a
useful mechanism for such monitoring
– Detecting memory errors
– Detecting tampering

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia

A Lightweight Software Control System
for Cyber Awareness and Security

Questions?

Jason Hiser
University of VirginiaUniversity of Virginia

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia

Backup SlidesBackup Slides

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 1313

Obfuscation and AntiObfuscation and Anti--TamperingTampering

• Anti-tampering (AT): making a program hard to
(meaningfully) modify

• Obfuscation (Obf): making a program hard to
understand

• Why?
– Protect Intellectual Property (IP)

• Preventing reverse engineering or code extraction
• Digital watermarking and fingerprinting

– Digital Rights Management (DRM)
– Security

• Anti-virus
• Anti-hacker
• Insider threats

– Obfuscation used to hide AT techniques

Presenter
Presentation Notes
Mc2zk: I changed the title of the slide. There is no point in using a non-common abbreviation without any explanation anywhere.

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 1414

Limitations of Previous Limitations of Previous
ObfObf/AT Work/AT Work

• Static
– Applied once at software build time
– Often NP-Hard if only static information is used, but dynamic

information easily breaks many techniques
• Slow

– High runtime/memory overhead
• Special Hardware

– Trusted network connection with bounded time
– Can trust that the CPU will generate result in bounded time

• Unrealistic threat model
– OS, network, or memory trusted
– Known optimal algorithms to calculate program checksums

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 1515

The Problem with all The Problem with all ObfObf/AT work,/AT work,
even mine!even mine!

• For an arbitrary application, strong Obf/AT
is impossible!
– The player holds all the cards, eventually they

will figure out how the application works and
how to change it (Barak’01)

• The good news…
– Sufficient to make an attacker’s job harder

than re-writing the application
– Some functions can be obfuscated (Wee’05,

Hohenberger’07)

Presenter
Presentation Notes
Mc2zk: Original sentence said: “It is sufficient to make it harder to understand/tamper with than it is to re-write the application from scratch.” This is confusing. Do you mean “more sufficient”?

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 1616

GoalsGoals

• Significantly stronger Obf/AT algorithms
– Not just against static attacks, but against realistic

hybrid dynamic/static attacks
• No reliance on custom, trusted HW/SW

– Should work on machine currently in your office
• Efficient runtime overhead

– 100x slowdown is unacceptable
• If necessary, configurable tradeoff between protection level

and overhead, perhaps on per-module basis

Presenter
Presentation Notes
Mc2zk: Changed “No one will run it with 100x slowdown” to “100x slowdown is unacceptable”

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 1717

Guards (AtallahGuards (Atallah’’02) 02)

• Code segments that check some property
of the program and react based on the
outcome
– Most commonly, check that the code is

unchanged and subtly fail if tampering is
detected.

– Each guard can protect other guards to form a
network

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 1818

Guards ExampleGuards Example
Application Binary

chksm=0;
for(int i=start;i<end;i++)

chksm+=*(int*)i;

%ebp+=chksm;

EXPECTED_CHECKSUM

10

• Advantages
– Provides circular protection
– Reasonable overhead

• Disadvantages
– Applied once at link time
– Execution of guard may

reveal its location

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 1919

Guards with SDTGuards with SDT
Strata

Application BinaryF$

• Advantages: Guards copied to F$ differently in each run of the program,
execution of guard does not reveal its location in the application text.

• Disadvantage: Can attempt to attack guards one at a time and guards still look the
same during each execution of the program, even if at different locations

1010

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 2020

Guards with SDTGuards with SDT
Strata

Application BinaryF$

• Advantages: Guards copied to F$ differently in each run of the program,
execution of guard does not reveal its location in the application text.

• Disadvantage: guards still look the same during each execution of the program

10

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 2121

Addressing ShortcomingsAddressing Shortcomings
• Flush the F$ periodically

– Move the guards around
• Encrypt the application code and decrypt on

demand
– Hides app. code from static disassembly/analysis

• Hide key with white-box AES techniques

– To succeed in an attack, encryption blocks must be
modified as a unit

• One-off changes, attacking guards one at a time, or playing
what-if games with single instructions will fail!

Presenter
Presentation Notes
Mc2zk: Original text: Forces a malicious user to modify ENTIRE application at once, instead of one-off changes (no attacking guards one at a time or playing what-if games with single instructions!). Modified to 2nd bullet, 2nd sub-bullet

Mc2zk: something sounds wrong with final sub-bullet: Dynamically guards look different each time! (Is it redundance? I think it might be, but not sure).

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 2222

But, isnBut, isn’’t the entire app. just in F$?t the entire app. just in F$?
Preliminary Results: Case Study Preliminary Results: Case Study gccgcc

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

- 2 4 6 8 10 12 14 16 18 20 22

Runtime (seconds)No flushing 10s flushing 1s flushing 0.1s flushing

A
pp

lic
at

io
n

Te
xt

 T
ra

ns
la

te
d

(%
 o

f t
ot

al
)

SDT does well to start with, no more than 45% of application text in the F$!
Flushing helps

• Flushing every 1 sec. => less than 10% of app. text in F$
• Flushing every 0.1 sec. => less than 3% of app. text in F$

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 2323

Dynamic transformsDynamic transforms

• Apply dynamic Obf/AT transforms on fragments
– Application never runs the same way twice
– Guards appear different each time they execute!

• Examples
– Dynamic disassembly resistance
– Dynamic control flow graph obfuscation
– Dynamic guards
– Instruction morphing
– Algebraic Identities

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 2424

Dynamic Disassembly ResistanceDynamic Disassembly Resistance

• Goal – make it harder to disassemble F$

8048330: 80 3d ee ac 08 41 00 cmpb $0x0, *(0x4108acee)

8048337: 74 02 je 804833b

8048339: 8d 84 c3 34 12 84 80 lea 80841234(%ebx,%eax,8),%eax

8048330: 80 3d ee ac 08 41 00 cmpb $0x0, *(0x4108acee)

8048337: 74 02 je 804833b

8048339: 8d 84 .byte 0x8d 0x84

804333b: c3 ret

804333c: 34 12 84 80 …

8048330: 80 3d ee ac 08 41 00 74 02 8d 84 c3 34 12 84 80

Lightweight transform performed randomly for each frag build

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 2525

(Dynamic) Opaque Predicates(Dynamic) Opaque Predicates

• Runtime generate predicates which are
hard to decrypt after generation

a ba=a->next;

b=b->next;

c=c->next;

if(a==b)

…

else if(b==c)

…

c

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 2626

Surely all this must take forever!Surely all this must take forever!
Preliminary Results: Flushing + EncryptionPreliminary Results: Flushing + Encryption

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4

17
7.m

es
a

17
9.a

rt
18

3.e
qu

ak
e

18
8.a

mmp
16

4.g
zip

17
6.g

cc
18

1.m
cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on
25

3.p
erl

bm
k

25
4.g

ap
25

5.v
ort

ex
25

6.b
zip

2
30

0.t
wolf

av
era

ge

R
un

tim
e

No flushing 10s flushing 1s flushing 0.1s flushing

• Flushing every 1 sec. => 3% slower than no flushing
• Flushing every 0.1 sec => Lots of slowdown.. but, maybe we can improve that

• Selectively flushing
• Using extra CPU’s in a multi-core machine

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 2727

How well does dynamic How well does dynamic ObfObf/AT /AT
protect applications?protect applications?

• Continuing evaluation ongoing as part of
CyberTrust’07 Grant

Presenter
Presentation Notes
Mc2zk: Changed “it” to dynamic Obf/AT. If this is incorrect, expand “it” to be more precise.

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 2828

OverviewOverview

• Introduction
• Overview
• Strata

– SDT Concepts

• SDT Applications
– Obf/AT

• Related Work and Summary

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 2929

Related Work Related Work -- SDTsSDTs
• SDT Applications

– Security policy enforcement (Code Diversity, Program
Shepherding)

– Software migration (Apple’s Rosetta)
– Dynamic instrumentation (PIN, FIST)
– Dynamic patching and debugging (Arachne)

• SDT Optimizations
– Dynamic optimizers (Dynamo/DynamoRIO, JITs)

• Bala, Duesterwald, Bruening, Suganuma, Arnold, …
– Trace selection:

• NET (Deusterwald’00)
• LEI (Hohenberger’05)

– Code cache management (Hazelwood’06)
• Many many more..

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 3030

Related Work Related Work –– ObfObf/AT/AT

• Guards (Atallah ’02)
– Breaking guards (Wurster’05),
– Self-modifying guards (Giffin’05)

• Opaque Predicates (Collberg’98)
• Data Obfuscation (Collberg’98)
• Control flow flattening (Wang’00)
• Dynamic code mutation (Madou’05)
• So many others…

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 3131

SummarySummary
• Software dynamic translation

– Efficient, powerful technology to dynamically modify
programs

– Low overhead
• Recent optimizations yield only 4% slower than native

execution for Spec2k benchmarks!
• Obfuscation and anti-tampering

– Important for DRM/IP/Security
– Current technology has many shortcomings against

realistic threat models
– Combining previous static techniques with SDT yields

significantly stronger Obf/AT protection

Presenter
Presentation Notes
Mc2zk: Changed “Recent advances” to “lowered”

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia

Optimizing Software Dynamic TranslationOptimizing Software Dynamic Translation
(for Program Obfuscation and Anti(for Program Obfuscation and Anti--tampering)tampering)

Jason D. HiserJason D. Hiser
http://www.cs.virginia.edu/~jdh8dhttp://www.cs.virginia.edu/~jdh8d

Questions?Questions?

Presenter
Presentation Notes
Mc2zk: changed slide to reflect current title

http://www.cs.virginia.edu/~jdh8d

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 3333

Experimental SetupExperimental Setup

• Strata running on 3 machines
– Opteron 244, 1.8GHz, Linux, gcc 4.0
– Xeon, 2.8GHz, Linux, gcc 3.3
– UltraSPARC-IIi, 500MHz, Solaris 5.9,

SUNWspro cc
• Results compared to no SDT
• Indirect branches handled efficiently with

indirect branch translation cache
mechanism

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 3434

Fast ReturnsFast Returns

• Translate call instructions to push fragment
cache return address instead of application ret.
addr.

+ Copy return instructions directly to F$
= Fast returns
Advantages: Very fast, minimal F$ space
Disadvantages: May break some programs with

nonstandard usage of call instruction.
Alternatives: Use IBTC/Sieve or Return Cache

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 3535

How to Handle How to Handle IBsIBs, Option 3: , Option 3:
Inline MappingsInline Mappings

• Instructions emitted at each branch to perform translation
• No hashing – compare app. address against inlined addresses

. . .
r1 = …
. . .
jmp r1
. . .

L0:
. . .

. . .
r1 = …
. . .
save t0
t0 = APPADDR_1
if (r1 == t0)

jmp FRAGADDR_100
restore t0

t0 = APPADDR_2
if (r1 == t0)

jmp FRAGADDR_120
restore t0

<backing mechanism>

Application Binary Fragment Cache

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 3636

Indirect Branch Translation CacheIndirect Branch Translation Cache

• Table in memory
– Advantage: Small code footprint & minimal branches
– Disadvantage: Memory accesses & data cache pressure
– Other considerations

• Uses two temporary registers & comparison

• Many options
– Sharing (one for all branches or one per branch)
– Appropriate size (number of entries)
– Resizing (dynamically adjust size)
– Reprobing (where to look on collision)
– Lookup code placement

• Inline in fragment or a separate “function”

4k-Entries
One for all

Not necessary
Space constraints

Space v. Speed

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 3737

SieveSieve

• Table as an instruction sequence
– Advantage: Fewer data memory accesses
– Disadvantage: More branches and possibly pressure

on instruction cache
– Other considerations

• Uses one temporary register
• Uses an address-sized constant compared to register

• Options
– Table size
– Others possible, but seem to not matter

16K-Entries

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 3838

Back to Indirect Branches (IB)Back to Indirect Branches (IB)

Fragment Cache

Next PC
Translate
Decode
Fetch

New
Fragment

Finished?

Dynamic TranslatorContext
Capture

Context
Switch

Cached?
New
PC

Application Binary
Context
Capture

Context
Switch

Cached?
New
PC

How necessary is this? Aren’t indirect branches pretty rare?

Presenter
Presentation Notes
Mc2zk: shortened title of slide, introduced IB abbreviation

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 3939

1.1 0.9 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.1 1.7 1.8
1.0 1.1 1.1

8.3

1.0

7.7

1.2

4.4

39.5

34.4

2.8
1.1 1.0 1.2

2.0 1.4

5.9

0

5

10

15

20

25

30

35

40

45

16
8.w

up
wise

17
1.s

wim
17

2.m
grid

17
3.a

pplu
17

7.m
es

a
17

8.g
algel

17
9.a

rt
18

3.e
quak

e
18

7.f
ac

er
ec

18
8.a

mmp
18

9.l
uca

s
19

1.f
ma3d

20
0.s

ixtra
ck

30
1.a

psi
16

4.g
zip

17
5.v

pr
17

6.g
cc

18
1.m

cf
18

6.c
raf

ty
19

7.p
arse

r
25

2.e
on

25
3.p

erlb
mk

25
4.g

ap
25

5.v
orte

x
25

6.b
zip

2
30

0.t
wolf

fp av
e

int a
ve av

e

Overhead (Normalized to Native) Millions of Indirect Calls+Switches/Second

The The ““rarityrarity”” of of IBsIBs

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 4040

How to Handle How to Handle IBsIBs, Option 1:, Option 1:
Indirect Branch Translation CacheIndirect Branch Translation Cache

• Mapping done with table in data memory (memory accesses)
– Table entry: <AppAddr, FragAddr>

• Table indexed by application address

. . .
r1 = …
. . .
jmp r1
. . .

L0:
. . .

. . .
r1 = …
. . .
save t0, t1
t0 = hash(r1)
if (IBTC[t0].AppAddr == r1)

t1 = IBTC[t0].FragAddr
jmp t1
restore t0, t1

else
jmp translator

Application Binary Fragment Cache

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 4141

Fragment Cache

How to Handle How to Handle IBsIBs, Option 2: , Option 2: SieveSieve

Dispatch
Jmp Bucket1

Jmp Bucket4

Return To
Translator

Bucket2
Addr8

Bucket1
Addr4

Bucket4
Addr10

Bucket3
Addr12

Frag10

Frag99

Frag111

Frag16

Sieve Table
Addr16 Addr10

• Mapping done by executing instruction sequence

Bucket5
Addr16

Frag204

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 4242

Combined: Inline MappingCombined: Inline Mapping

• Inlining mappings at indirect
– Advantage: No hashing, no mem. access, min. branches
– Disadvantage: Code growth & hit cost depends on hit entry
– Other considerations

• Possibly one register and constant address comparison to register

• Options
– Number of inline entries

• Should the translator decide the amount of inlining?
– Target to inline
– Execution point when that target should be selected
– Backing mechanism to use (what to do on a miss)

It depends ..

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 4343

IBTC Vs. Sieve IBTC Vs. Sieve
UltraSPARCUltraSPARC--IIiIIi

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

177.mesa 176.gcc 186.crafty 252.eon 253.perlbmk 254.gap 255.vortex graph ave

R
un

tim
e

(O
ve

rh
ea

d)
.

32K-Entry IBTC 1K-Entry Sieve

Sieve: 2 instructions to generate address-sized constant, more control transfers

Presenter
Presentation Notes
Large address constants make the sieve perform worse

Mc2zk: added “Sieve” to clarify statement at the bottom if anyone loses attention when you say it

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 4444

IBTC Vs. Sieve IBTC Vs. Sieve
Pentium IV XeonPentium IV Xeon

0.8

1

1.2

1.4

1.6

1.8

2

2.2

177.mesa 176.gcc 186.crafty 252.eon 253.perlbmk 254.gap 255.vortex graph ave

R
un

tim
e

(O
ve

rh
ea

d)
.

32K-Entry IBTC 32K-Entry Sieve 16K-Entry Sieve

• Sieve: 1 instruction to generate address-sized constant

Evaluating Indirect Branch Handling Mechanisms in Software Dynamic Translation Systems in
CGO’07

• Sieve: No need to save/restore eflags for 16k-entries => Big win!

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 4545

Why SDT for Why SDT for ObfObf/AT?/AT?

• Efficient: 2-10% overhead
• Monitors program execution

– Dynamically apply Obf/AT transformations
– Malicious user first has to figure out the SDT,

then the application
• Ever try to debug a program running under a simulator without

source code?!
– The SDT can protect the application, and the application can

protect the SDT, circular level of trust

Presenter
Presentation Notes
Mc2zk: removed “think” from the first bullet. You can say it, people don’t need to read the word

Mc2zk: removed “SDT” from bullets. It’s redundant. The slide title already says why sdt?

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 4646

Unconditional Direct BranchesUnconditional Direct Branches

Context
Capture

Context
Switch Next PC

Translate
Decode
Fetch

New
Fragment

Finished?

Dynamic Translator

Cached?
New
PC

System Start

Fragment Cache Application Binary

Direct Unconditional branchElide direct branches (and calls) to avoid extra instructions

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 4747

F$ InefficienciesF$ Inefficiencies

• Each conditional branch transfers control
to a trampoline

+ Trampolines patched to jump directly to
target fragment

= 2 F$ branches executed for every one
executed branch in the original program!

• Patched trampolines leave wasted F$
space – reduced locality?

• Possible code duplication
– 100 calls to strcpy() executed lead to 100

copies of the first basic block of strcpy thanks
to partial inlining and unconditional branch
eliding

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 4848

Improving PerformanceImproving Performance

Fragment Cache Application Binary
Context
Capture

Context
Switch Next PC

Translate
Decode
Fetch

New
Fragment

Finished?

Dynamic Translator

Cached?
New
PC

Tramp. Pool

• Advantages
– One branch in F$ for most

branches in application text
– Trampoline pool improves locality
– Trampolines can be recycled

• Disadvantages
– May translate unrequested basic

blocks (waste of time and F$
space)

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 4949

Fragment Construction PoliciesFragment Construction Policies

1) Conditional branch policies
2) Unconditional branch policies
3) Call policies

• Partial inlining
• Lazy vs. eager target translation

4) Fragment alignment
5) Trampoline placement

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 5050

Conditional Branch HandlingConditional Branch Handling

• Always stop translating
• Always continue translating
• Stop if…

– Target already translated
– Fall through already translated
– Target OR fall through translated
– Target AND fall through translated

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 5151

Conditional BranchesConditional Branches
OpteronOpteron 244244

0.8

1.0

1.2

1.4

1.6

1.8

16
8.w

up
wise

17
1.s

wim
17

2.m
gri

d
17

3.a
pp

lu
17

7.m
es

a
17

8.g
alg

el
17

9.a
rt

18
3.e

qu
ak

e
18

7.f
ac

ere
c

18
8.a

mmp
18

9.l
uc

as
19

1.f
ma3

d
20

0.s
ixt

rac
k

30
1.a

ps
i

16
4.g

zip
17

5.v
pr

17
6.g

cc
18

1.m
cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k
25

4.g
ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf
av

era
ge

int
 av

e
fp

av
e

R
un

tim
e

(N
or

m
al

iz
ed

)

always stop always continue

“Always continue” reduces overhead from 39% to 28% for integer benchmarks

Presenter
Presentation Notes
Mc2zk: clarified overhead summary text. It wasn’t clear WHAT/which policy reduced the overhead.

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 5252

Partial Partial InliningInlining/Branch Eliding/Branch Eliding

• Advantages
– Provides opportunity for optimization
– Eliminates call/branch instructions

• Disadvantages
– Increased code duplication
– Calls not matched with return instructions =>

Bad branch predictor performance!

Presenter
Presentation Notes
Explain partial inlining better.

Wednesday, August 12, 2009Wednesday, August 12, 2009 University of VirginiaUniversity of Virginia 5353

Partial Partial InliningInlining PerformancePerformance
OpteronOpteron 244244

0.8

1.0

1.2

1.4

1.6

1.8

16
8.w

up
wise

17
1.s

wim
17

2.m
gri

d
17

3.a
pp

lu
17

7.m
es

a
17

8.g
alg

el
17

9.a
rt

18
3.e

qu
ak

e
18

7.f
ac

ere
c

18
8.a

mmp
18

9.l
uc

as
19

1.f
ma3

d
20

0.s
ixt

rac
k

30
1.a

ps
i

16
4.g

zip
17

5.v
pr

17
6.g

cc
18

1.m
cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k
25

4.g
ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf
av

era
ge

int
 av

e
fp

av
e

R
un

tim
e

(N
or

m
al

iz
ed

)

partial inlining no partial inlining

“No partial inlining” reduces overhead from 24% to 10% for integer benchmarks

Presenter
Presentation Notes
Note that since this is selected results, that this policy doesn’t match the other slide.

Mc2zk: changed bottom text for clarification.

Mc2zk: eliminated words “For more details…” the audience can figure this out.

	A Lightweight Software Control System for Cyber Awareness and Security
	The Problem
	Software Dynamic Translation (SDT)
	Overview
	Strata Control System Framework
	Strata Virtual Machine
	Strata Virtual Machine
	This takes FOREVER, right?� UltraSPARC-IIi Results
	Strata as a Control System�
	Summary
	A Lightweight Software Control System for Cyber Awareness and Security
	Backup Slides
	Obfuscation and Anti-Tampering
	Limitations of Previous �Obf/AT Work
	The Problem with all Obf/AT work,�even mine!
	Goals
	Guards (Atallah’02)
	Guards Example
	Guards with SDT
	Guards with SDT
	Addressing Shortcomings
	But, isn’t the entire app. just in F$?�Preliminary Results: Case Study gcc
	Dynamic transforms
	Dynamic Disassembly Resistance
	(Dynamic) Opaque Predicates
	Surely all this must take forever!�Preliminary Results: Flushing + Encryption
	How well does dynamic Obf/AT protect applications?
	Overview
	Related Work - SDTs
	Related Work – Obf/AT
	Summary
	Optimizing Software Dynamic Translation� (for Program Obfuscation and Anti-tampering)
	Experimental Setup
	Fast Returns
	How to Handle IBs, Option 3: �Inline Mappings
	Indirect Branch Translation Cache
	Sieve
	Back to Indirect Branches (IB)
	The “rarity” of IBs
	How to Handle IBs, Option 1:�Indirect Branch Translation Cache
	How to Handle IBs, Option 2: Sieve
	Combined: Inline Mapping
	IBTC Vs. Sieve �UltraSPARC-IIi
	IBTC Vs. Sieve �Pentium IV Xeon
	Why SDT for Obf/AT?
	Unconditional Direct Branches
	F$ Inefficiencies
	Improving Performance
	Fragment Construction Policies
	Conditional Branch Handling
	Conditional Branches�Opteron 244
	 Partial Inlining/Branch Eliding
	Partial Inlining Performance�Opteron 244

