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Presenter
Presentation Notes
Good Morning, Ladies and Gentlemen: It gives me great pleasure to be here to deliver this lecture at this FOCAPO conference. I’d like to thank Prof. Grossmann and Dr. McDonald for extending me the invitation. 



Abnormal Events Management (AEM) 
and Resilient Control

Abnormal events are deviations in system behavior 
from normal operating regime

Safety/Security problems, Environmental concerns, Quality of service 
problems and Economic losses

Why do abnormal events occur?
Human errors: Design Flaws, Operational Mistakes (~70%)
Material/Equipment degradation and failures
Natural events: Hurricanes
Intentional attacks
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Presentation Notes
This is really a process control problem, even though NOT many academic researchers in the control community have worked on in this problem. This is largely due to the preferred  focus  of the academic control community towards : (1) regulatory control and (2) only mathematical approaches. 
However, process control practioners in the industry, whether they are engineers or operators, don’t feel this way and have a different perspective. 

Let me elaborate this in the next two slides.



Academic View of Control

•x= f (x,u)
y=h(x,u)

c(s) g(s)

h(s)

A  → B

L[ f (t)]≡−f (s)= f (t) −ste
0

∞

∫ dt
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Typical academic approach to process control, the mathematical perspective.
A very valuable perspective, I teach this perspective to senior cheme undergrads in my control course at Purdue. 
But this is NOT  the only perspective, even though when you talk to academic control researchers one often  gets the impression that this is the only way to approach control. 

Now let’s take a look at the Operator’s perspective of control. 



Operator’s View of Control

A Day in the Life of a 
Plant Operator
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Presentation Notes
Meet Joe Sixpack, an operator in the control room of a large refinery. Joe is called a board operator, not because he is afflicted with ‘boredom’, but because he is operating the ‘control board’! 
In a typical refinery, he may be looking at 500-1000 tags of real-time measurements such as pressure, temp, flow, controller/valve settings, set points and so on every minute. 
That’s a lot of information for him to process. But fortunately most of the time the process is well-behaved and not much is going on. May be he is indeed ‘bored’ somewhat!
This is somewhat like the following story. I once met  someone who had sailed across the Atlantic ocean alone in a sail boat. I told him it must be really exciting to sail solo like that. He said: “Not really. It is days of boredom punctuated by hours of sheer terror!”
An operator’s day is sort of like that….







Operator’s View of Process Control
Pump A pumping oil has tripped - Cause Unknown
You switch to Pump B. That also trips - Cause Unknown
Soon hundreds of alarms are going off – Cause(s) Unknown
With in minutes you have an explosion and a fire. Two people are
killed and a few hurt at this point.
It is 10:00 in the night
The plant manager is in Aberdeen, Scotland, and not available
You are on top of an off-shore oil platform in the middle of the 
North Sea

You are the Shift Supervisor: 
What do you do?
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Did I make up this scenario? Can this really happen? Did this really happen? Unfortunately, it can and it did.
This is the sequence of events that led to the Piper Alpha Disaster in the North Sea in July 1988. About 167 people were killed in this accident.
When this happens, you don’t see Laplace Transforms, Transfer functions, or stability theorems. They are useless at this point.
You need another perspective here. The causal perspective. This complements the math perspective of control. 
Now how do you design computer systems that can assist operators under such scenarios? This is the concept of intelligent control systems, systems that can perform cause-and-effect reasoning. What are the various research issues and challenges in designing, implementing and maintaining such systems? 
This is the problem I have been interested in for the past 20 years. This talk is an overview of these issues, challenges and future directions. 




Process Safety is a Major Concern: The BIG Ones

Piper Alpha Disaster, Occidental Petroleum 
Scotland, 1988

Off-shore oil platform explosion
164 people killed
$2 Billion in losses

Union Carbide, Bhopal, India, 1984
MIC release into atmosphere

3000-10,000 people killed

100,000 injured

$0.5-1.0 Billion in losses
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If I were to ask you to guess when did major chemical plant accidents occur given two choices:
(a) way back in the past, about 40-50 years ago when plants were not automated or
(b) more recently, in the last 10-15 years or so
you are likely to choose (a). 
Why? Because your rationale would be, way back in the past we did not have all these great sophisticated control systems, DCS, MPC, plant-wide integrated control etc. So, it is likely that in those dark ages when plants were manually controlled we probably had the biggest disasters.
Reasonable logic but you would be wrong. The biggest disasters, in terms of people killed or hurt and dollars lost, have occurred in recent times despite all the progress in control systems. 
Why? I will answer that in the next few minutes.




On A Smaller Scale.......On A Smaller Scale.......
Mobil, Torrance, CA explosion & fire, 10/94
Conoco Lake Charles, LA, cat cracker fire, 10/94
Miles chemical  plant, Baytown, TX, acid leak, 11/94
Koch, Corpus Christi, TX, separator explosion, 11/94
Mobil, Paulsboro, NJ, chemical releases, 11/94
Terra Industries, Sioux City, IA, explosion, 12/94
Chevron, El Segundo, CA, furnace fire, 1/95
Mobil, Torrance, CA, gasoline spill, 2/95
Unocal, San Francisco,  acid overflow/leak, 3/95
Amoco, Cartere, NJ, depot leak/fire, 3/95
Clark, Blue Island, IL, refinery fire/extended closure, 3/95 
Ultramar, Wilmington, CA, tank leak/fire, 3/95
Conoco, Ponca City, OK, crude topping unit fire, 3/95
Sun Oil, Philadelphia, gas leak, 4/95
Napp Technologies, Lodi, NJ, explosion & fire, 4/95
Rhone-Poulenc, Philadelphia, granulator explosion and fire, 5/95
Reichhold Chemicals, Grundy Co, IL, rupture/fire/spill, 5/95
BP, Lima and Toledo, OH refinery fires, 5/95
Ultramar, Wilmington, CA, crude unit fire, 6/95
Unocal, San Francisco, naptha tank fire, 6/95
Tosco, San Francisco, crude unit fire, 6/95
Murphy Oil, New Orleans, solvent extraction unit fire, 7/95
Amoco Oil, Texas City, cat cracker explosion & fire, 7/95
Conoco, Ponca City, OK, refinery fire, 7/95
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incidents:  12 deaths, hundreds hurt, $1B+ losses, $10B+ impact on Economy

“A billion here.......a billion there......and pretty soon you are talking real money!”
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Pascagoula--procedural error during maintenance
AVGas--missed unexpected_changing_level alarm
Pembroke--missed critical alarm during flood of nusiance alarms
Belpre--material used in adhesives, road and roofing materials, packaging



AEM Lessons Learned
Need intelligent real-time operator support

Prognostic: Anticipate Problems
Diagnostic: Effectively and Safely Manage 
Problems

Instead of the React-and-Fix approach, we need 
to anticipate and manage “emergent” behavior 
better

Resilient systems 
Need more thorough PHA and integration with 
AEM

New OSHA/EPA regulations

Importance of Operator Training
Management/Organization commitment to AEM 
and PHA
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There are three general areas of challenges here. All are equally important. However, in this talk, I will restrict myself to the first two topics, namely, intelligent control systems. Even here I will focus mainly on the fundamental issues.



Resilient Control 
Resilient Systems

Recovering or rebounding readily from adversity, resilire – to jump back
Resilient control is not a new concept – Degrees of resiliency

Variable e.g. inlet flow rate high
Regulatory Control (RegC)

Parameters e.g. Fouling in heat exchanger reduces the 
heat transfer coefficient
Model Predictive Control (MPC)  and RegC

Models e.g. process shifted to a different 
operating regime
Fault Tolerant Control (FTC) and 
Intelligent Supervisory Control (ISC)

Structural e.g. equipment failure
Intelligent Supervisory Control (ISC)

Systemic Resilient Control 

What is new perhaps is the systemic perspective of resiliency



Resilient Systems: Performance 
Expectations

State Awareness
Be aware of what is happening to itself and the 
environment in real-time all the time
Quick abnormality or anomaly detection and 
diagnosis
Robustness to noise and uncertainties

Adaptability
Autonomy: Empowered to make decisions
Leverage human intelligence
Graceful degradation, not catastrophic
Reliability, Safety, and Security



Resilient Control Hierarchy

Engineered System

Planning

Scheduling

Resilient control

State Awareness

Regulatory control

Data acquisition



Fault Diagnosis is Crucial to Resiliency

Diagnostic
Methods

Structural
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Causal 
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Abstraction
Hierarchy

Fault 
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Digraphs

Quantitative Qualitative

EKF

Parity
Space

Observers

Qualitative
Physics

Process History Based

Qualitative Quantitative

Expert 
systems

QTA Statistical

Statistical
Classifiers

PCA/
PLS

Neural 
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Model-Based



Comparison of Different Diagnostic Methods

No single method achieves all



Model based Framework: Challenges

Appropriate level of modeling
Too Coarse: Not very useful results
Too Fine: Too complex and buried in details 
Quantitative vs Qualitative  

“ALL MODELS ARE WRONG, SOME 
ARE USEFUL”
-- George Box (U. Wisconsin)



Model-based Diagnosis

Consistency Checking (Analytical Redundancy): Compare actual behavior 
with a nominal fault-free model driven by same inputs, using residuals.
Residuals: Functions accentuated by faults representing this inconsistency

Process
Actual Operation

Model of
Normal Operation

Measured
Situation

Calculated
Situation

Known
inputs (u)

Unknown
inputs (d) Faults (f) Known

inputs (u)

Comparison

Residual
Generation

Decision
Making

Statistical testing of residuals to 
arrive at a diagnostic conclusion

Unknown fault modes, 
uncertain nominal model,
system/measurement noise

Residual
Analysis

Faults
Residuals
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Quantitative model based methods typically have the following structure as shown in the figure. It has two parts. In the first part you generally compare actual behavior with expected behavior derived from a model and compute the difference called  residuals. In the second part, you analyze the residuals and interpret them to assess the process behavior and identify faults, if any. There are different methods of computing the residuals and analyzing them. 



II. Model-based
 
Active FTC

Introduction of a fault
→

 
deviation between measurement and 
measurement prediction
r(k) = y(k|k-1) –

 
ym(k)

residuals, r(k), evolve differently for different 
faults



II. Model-based
 
Active FTC

Example: CSTR reactor, reaction A→B
Actuator bias: inlet concentration 

Actuator bias 
signatures



II. Model-based
 
Active FTC

Example: CSTR reactor, reaction A→B
Sensor bias: concentration B (yB

m) 

Sensor bias 
signatures



II. Model-based
 
Active FTC

Works fine, but:
•

 

Assumes an exact model
Not generally available
Uncertain model structure and parameters

•

 

Data for fault
 
parameter

 
estimation

Added uncertainty in corrected model



What is needed?
Priors: 

L(M)
model probability
follows from Monte Carlo sampling during calibration procedure
(off line)

P(f), P(β)
Likelihood of a fault to occur, likelihood of fault parameters
our choice: uninformative prior

each fault is as likely
parameters are uniformly distributed over ]-∞, +∞[

IV. Bayesian
 
FTC



Resilient Control Architecture

Intelligent MonitoringIntelligent Monitoring

Fault DiagnosisFault Diagnosis

Regulatory 
Control(MPC)

Regulatory 
Control(MPC)

ProcessProcess

Data AcquisitionData Acquisition

OperatorOperator

Data Reconciliation 
Parameter Estimation
Data Reconciliation 
Parameter Estimation

Supervisory Control
Fault Administration

and RTO
Supervisory Control
Fault Administration

and RTO

Data

Data

Data Data

Manipulated Variables

Reconciled Data
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Summary
Complexity and size of modern engineered 
systems such as chemical plants make it 
difficult to manage abnormal events (AEM)
AEM has been identified as a very important 
problem by the process industries

Next Control Frontier: Resilient Control Systems

Reviewed the different approaches
Model based and Process history based 

Hybrid system under develkopment
Combines Bayesian, QTA, and SDG
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Thank You for Your Attention!

Any Questions?
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