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B t l ti

MOTIVATION

 Bees caste regulation process:
 M bees in S castes
 i) is fraction of bees in caste i i = 1 S i) is fraction of bees in caste i, i = 1,…, S
 Remove on the castes (experimentally, foragers)
 In a short time, bees re-distribute themselves ,

among the castes so that (i)’s remain the same

 Questions:
 How do the bees monitor the “plant” (family)?
 How do they control the plant (determine the 
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optimal distribution of bees among castes and 
maintain it)?



 First goal: Develop a theory that could explain (at least,First goal: Develop a theory that could explain (at least, 
hypothetically) this phenomenon

 Second goal: Apply this theory to resilient monitoring 
d t l f i d t i l l tand control of industrial plants

 The first goal has been, to a certain degree, 
accomplished in S.M. Meerkov, “Mathematical Theory ofaccomplished in S.M. Meerkov, Mathematical Theory of 
Rational Behavior”, Mathematical Biosciences, 1979

 The second is being pursued today in a recently 
(initiated resilient monitoring project with INL (Dr. 

Garcia)
 The purpose of this talk to overview TRB and illustrate
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 The purpose of this talk to overview TRB and illustrate 
it by an application in a traffic control problem
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1. MODELING AND  ANALYSIS OF 
INDIVIDUAL RATIONAL BEHAVIOR

1 1 Rational Behavior1.1 Rational Behavior
 Behavior – a sequence of decisions in time, i.e., a 

dynamical system in the decision space X:y y p
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Rational behavior the behavior )( ttxx Rational behavior – the behavior                          , 
which satisfies the following axioms:
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 Selectivity or rationality:
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 (x) → penalty function at decision x
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 (x) → penalty function at decision x
 N → measure of rationality



1.2 Examples of Rational Behavior1.2 Examples of Rational Behavior
1.2.1 Natural systems

 Bees in foraging behavior Bees in foraging behavior

……..
5% 10% 70%

Mi i f di b h i
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X X

 Mice in feeding behavior

x

x x x
x x x

 Dog in the circle experiment
X1 X2

 Workers in production (Safelite Glass Lincoln Electric)
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 Workers in production (Safelite Glass, Lincoln Electric)

X1 X2



1.2.2 Mathematical systems

 Ring element: )10[X (x) Ring element: )1,0[X (x)
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 Illustration: Illustration:
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2. MODELING AND ANALYSIS OF
GROUP RATIONAL BEHAVIOR

2 1 Groups of Rational Individuals2.1 Groups of Rational Individuals

 Group – a set of M > 1 rational individuals 
interacting through their penalty functions:interacting through their penalty functions:

Group state space:

Mixxx Miii ,,1   ),,,,,( 1  

 Group state space:

S ti l l ith f i t ti

MXXXXx  21

 Sequential algorithm of interaction:
Mixxx Miii ,,1   ),const,var,,,const( 1  
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2.2 Homogeneous Fractional Interaction

 M individuals, Xi=X, ∀i

X XX

 Assume that at t0:

X1 X2

 Assume that at t0:
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Homogeneous Fractional Interaction an Homogeneous Fractional Interaction – an 
interaction defined by the group penalty function:
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Group penalty function defines the penalty function Group penalty function defines the penalty function 
of each individual as follows:
 For ,)( 10 Xtxi  f(),)( 10i
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Interpretation Interpretation
 Beehive food distribution

 Corporation-wide bonuses

 Desirable state

 Corporation wide bonuses

 Uniform wealth distribution

)(inf arg
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 Question:
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2.3 Inhomogeneous Fractional Interaction

 M individuals, Xi=X, ∀i, i , ∀

I h F ti l I t ti i t ti

X1 X2
X

 Inhomogeneous Fractional Interaction – an interaction 
defined by two subgroup penalty functions

]10[0)(0)(  vvfvf ]1,0[  ,0)( ,0)( 21  vvfvf

f2() f1()f1( )
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Penalty for each individual are defined as follows: Penalty for each individual are defined as follows:
 For ,)( 10 Xtxi 
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Interpretation Interpretation
 Differentiated corporate bonuses system
 Non-uniform wealth distribution

 Desirable state: Nash equilibrium
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**  ff 

 Question:
?)( **vtv 

19



2 4 Properties of Group Behavior under2.4 Properties of Group Behavior under 
Homogeneous Fractional Interaction

Theorem: Under the homogeneous fractional Theorem: Under the homogeneous fractional 
interaction, the following effect of “critical mass” 
takes place:  C > 0, such that

lim if )(
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  = 0.5 implies the state of maximum entropy – the 
group behaves like a statistical mechanical gas (no 
rationality)
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rationality)



 Empirical observations Empirical observations

 Beehive: when M is sufficiently small, the caste regulation 
process takes place; when M becomes large the familyprocess takes place; when M becomes large, the family 
splits

 Abnormal behavior of unusually large groups of animals 
(locust deers etc )(locust, deers, etc.)

 Pay-for-group-performance: cooperate-wide bonuses, BP –
Prudhoe Bay vs AnchoragePrudhoe Bay vs. Anchorage
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2 5 Properties of Group Behavior under2.5 Properties of Group Behavior under 
Inhomogeneous Fractional Interactions

 Assume  unique ** such that f (**) = f (**) and Assume  unique  such that f1( ) = f2( ) and
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 Theorem: Under the inhomogeneous fractional 
interaction, no effect of “critical mass” takes place. 
Specifically  N* such that ∀N  N*Specifically,   N such that ∀N  N
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3. APPLICATION TO PAY AND INCENTIVE 
SYSTEM (Joint work with UM undergraduate Leeann Fu)

3 1 Scenario Road 23.1 Scenario Road 2
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Problem 1: Assuming that the performance index is Problem 1: Assuming that the performance index is 
time to travel and each driver exhibits rational 
behavior, investigate the steady state distribution of 
vehicles among Roads 1 and 2

 Problem 2: Assuming that the drivers are rational and 
given a fixed amount of goods to transport from A togiven a fixed amount of goods to transport from A to 
B, analyze the total time necessary to transport the 
goods under different pay systems: 
 Pay-for-individual-performance
 Pay-for-group-performance
 Pay-for-time
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 Pay for time



3.2 Parameters Selected

 M = 6
 N = var
 Road systems

 System 1:

80142
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3.3 Problem 1

 Penalty functionsy
 System 1:  System 2:
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Results Results
 System 1:

27



 System 2: System 2:

28



3.4 Problem 2

 Penalty functions Penalty functions
 System 1:

User eq = System eq :User eq. = System eq.:

* = **
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 System 2: System 2:

User eq. ≠ System eq.:

* ≠ **
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Results Results
 System 1
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 System 2 System 2
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3.5 Comparisons

F t 1 For system 1

 For system 2
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3.6 Discussion

 User equilibrium = system equilibrium (* = **): 
pay-for-individual-performance is the best

 User equilibrium ≠ system equilibrium (* ≠ **): 
pay-for-group-performance maybe the best (if M ispay for group performance maybe the best (if M is 
sufficiently small and N is sufficiently large)
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4. POTENTIAL APPLICATIONS IN RESILIENT 
MONITORING/CONTROL

Resilient Monitoring: Resilient Monitoring: 
 sensor allocation
 sensor regime optimization sensor regime optimization
 sensor spatial distribution

 Resilient Control:
 control laws for rational controllers
 analysis of closed loop systems with rational 

t llcontrollers
 actuator and sensor re-allocation
 non standard control problems (e g robot
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 non-standard control problems (e.g., robot 
colonies)



5. OPEN PROBLEMS

f f Learning in the framework of rational behavior
 Modeling of experience-based learning
 Analysis of rational behavior with learningy g

 Groups of individuals with different levels of 
rationalityrationality

 Group behavior under rules of interaction other than p
fractional

General theory of rational deciders
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 General theory of rational deciders



5. CONCLUSION

 Mimicking physical potentials of natural systems led 
to airplanes, car, computers, radars, etc.

 Mimicking the capacity of natural systems to 
resiliency and adaptation will lead to mechanismsresiliency and adaptation will lead to mechanisms 
that can survive in the artificial world of the “survival 
of the fittest”.
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