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B t l ti

MOTIVATION

 Bees caste regulation process:
 M bees in S castes
 i) is fraction of bees in caste i i = 1 S i) is fraction of bees in caste i, i = 1,…, S
 Remove on the castes (experimentally, foragers)
 In a short time, bees re-distribute themselves ,

among the castes so that (i)’s remain the same

 Questions:
 How do the bees monitor the “plant” (family)?
 How do they control the plant (determine the 
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optimal distribution of bees among castes and 
maintain it)?



 First goal: Develop a theory that could explain (at least,First goal: Develop a theory that could explain (at least, 
hypothetically) this phenomenon

 Second goal: Apply this theory to resilient monitoring 
d t l f i d t i l l tand control of industrial plants

 The first goal has been, to a certain degree, 
accomplished in S.M. Meerkov, “Mathematical Theory ofaccomplished in S.M. Meerkov, Mathematical Theory of 
Rational Behavior”, Mathematical Biosciences, 1979

 The second is being pursued today in a recently 
(initiated resilient monitoring project with INL (Dr. 

Garcia)
 The purpose of this talk to overview TRB and illustrate
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 The purpose of this talk to overview TRB and illustrate 
it by an application in a traffic control problem



OUTLINE

1. Individual rational behavior
2. Group rational behaviorp
3. Application
4. Potentials in resilient monitoring/control4. Potentials in resilient monitoring/control
5. Open problems
6 Conclusions6. Conclusions
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1. MODELING AND  ANALYSIS OF 
INDIVIDUAL RATIONAL BEHAVIOR

1 1 Rational Behavior1.1 Rational Behavior
 Behavior – a sequence of decisions in time, i.e., a 

dynamical system in the decision space X:y y p
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Rational behavior the behavior )( ttxx Rational behavior – the behavior                          , 
which satisfies the following axioms:

),,( 00),( ttxx Nx

 Ergodicity:
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 Selectivity or rationality:
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 (x) → penalty function at decision x
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 (x) → penalty function at decision x
 N → measure of rationality



1.2 Examples of Rational Behavior1.2 Examples of Rational Behavior
1.2.1 Natural systems

 Bees in foraging behavior Bees in foraging behavior

……..
5% 10% 70%

Mi i f di b h i
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x
x

xxx x x

x

X X

 Mice in feeding behavior

x

x x x
x x x

 Dog in the circle experiment
X1 X2

 Workers in production (Safelite Glass Lincoln Electric)
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 Workers in production (Safelite Glass, Lincoln Electric)

X1 X2



1.2.2 Mathematical systems

 Ring element: )10[X (x) Ring element: )1,0[X (x)
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 Rationality:
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 Additional property:
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 Illustration: Illustration:
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 A search algorithm ( ) A search algorithm
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2. MODELING AND ANALYSIS OF
GROUP RATIONAL BEHAVIOR

2 1 Groups of Rational Individuals2.1 Groups of Rational Individuals

 Group – a set of M > 1 rational individuals 
interacting through their penalty functions:interacting through their penalty functions:

Group state space:

Mixxx Miii ,,1   ),,,,,( 1  

 Group state space:

S ti l l ith f i t ti

MXXXXx  21

 Sequential algorithm of interaction:
Mixxx Miii ,,1   ),const,var,,,const( 1  
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2.2 Homogeneous Fractional Interaction

 M individuals, Xi=X, ∀i

X XX

 Assume that at t0:

X1 X2

 Assume that at t0:
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Homogeneous Fractional Interaction an Homogeneous Fractional Interaction – an 
interaction defined by the group penalty function:

]1 ,0[   ,0)(  f
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Group penalty function defines the penalty function Group penalty function defines the penalty function 
of each individual as follows:
 For ,)( 10 Xtxi  f(),)( 10i
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Interpretation Interpretation
 Beehive food distribution

 Corporation-wide bonuses

 Desirable state

 Corporation wide bonuses

 Uniform wealth distribution

)(inf arg
]10[

* vfv
v
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 Desirable state

]1,0[v

?)( *vtv 
 Question:
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2.3 Inhomogeneous Fractional Interaction

 M individuals, Xi=X, ∀i, i , ∀

I h F ti l I t ti i t ti

X1 X2
X

 Inhomogeneous Fractional Interaction – an interaction 
defined by two subgroup penalty functions

]10[0)(0)(  vvfvf ]1,0[  ,0)( ,0)( 21  vvfvf

f2() f1()f1( )
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Penalty for each individual are defined as follows: Penalty for each individual are defined as follows:
 For ,)( 10 Xtxi 
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Interpretation Interpretation
 Differentiated corporate bonuses system
 Non-uniform wealth distribution

 Desirable state: Nash equilibrium

)]()([ arg 21
**  ff 
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2 4 Properties of Group Behavior under2.4 Properties of Group Behavior under 
Homogeneous Fractional Interaction

Theorem: Under the homogeneous fractional Theorem: Under the homogeneous fractional 
interaction, the following effect of “critical mass” 
takes place:  C > 0, such that

lim if )(
,

* 
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

  = 0.5 implies the state of maximum entropy – the 
group behaves like a statistical mechanical gas (no 
rationality)
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 Empirical observations Empirical observations

 Beehive: when M is sufficiently small, the caste regulation 
process takes place; when M becomes large the familyprocess takes place; when M becomes large, the family 
splits

 Abnormal behavior of unusually large groups of animals 
(locust deers etc )(locust, deers, etc.)

 Pay-for-group-performance: cooperate-wide bonuses, BP –
Prudhoe Bay vs AnchoragePrudhoe Bay vs. Anchorage
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2 5 Properties of Group Behavior under2.5 Properties of Group Behavior under 
Inhomogeneous Fractional Interactions

 Assume  unique ** such that f (**) = f (**) and Assume  unique  such that f1( ) = f2( ) and
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 Theorem: Under the inhomogeneous fractional 
interaction, no effect of “critical mass” takes place. 
Specifically  N* such that ∀N  N*Specifically,   N such that ∀N  N
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3. APPLICATION TO PAY AND INCENTIVE 
SYSTEM (Joint work with UM undergraduate Leeann Fu)

3 1 Scenario Road 23.1 Scenario Road 2
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Problem 1: Assuming that the performance index is Problem 1: Assuming that the performance index is 
time to travel and each driver exhibits rational 
behavior, investigate the steady state distribution of 
vehicles among Roads 1 and 2

 Problem 2: Assuming that the drivers are rational and 
given a fixed amount of goods to transport from A togiven a fixed amount of goods to transport from A to 
B, analyze the total time necessary to transport the 
goods under different pay systems: 
 Pay-for-individual-performance
 Pay-for-group-performance
 Pay-for-time
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 Pay for time



3.2 Parameters Selected

 M = 6
 N = var
 Road systems

 System 1:

80142
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 System 2:
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3.3 Problem 1

 Penalty functionsy
 System 1:  System 2:
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Results Results
 System 1:
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 System 2: System 2:
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3.4 Problem 2

 Penalty functions Penalty functions
 System 1:

User eq = System eq :User eq. = System eq.:

* = **
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 System 2: System 2:

User eq. ≠ System eq.:

* ≠ **
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Results Results
 System 1
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 System 2 System 2
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3.5 Comparisons

F t 1 For system 1

 For system 2
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3.6 Discussion

 User equilibrium = system equilibrium (* = **): 
pay-for-individual-performance is the best

 User equilibrium ≠ system equilibrium (* ≠ **): 
pay-for-group-performance maybe the best (if M ispay for group performance maybe the best (if M is 
sufficiently small and N is sufficiently large)
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4. POTENTIAL APPLICATIONS IN RESILIENT 
MONITORING/CONTROL

Resilient Monitoring: Resilient Monitoring: 
 sensor allocation
 sensor regime optimization sensor regime optimization
 sensor spatial distribution

 Resilient Control:
 control laws for rational controllers
 analysis of closed loop systems with rational 

t llcontrollers
 actuator and sensor re-allocation
 non standard control problems (e g robot

35

 non-standard control problems (e.g., robot 
colonies)



5. OPEN PROBLEMS

f f Learning in the framework of rational behavior
 Modeling of experience-based learning
 Analysis of rational behavior with learningy g

 Groups of individuals with different levels of 
rationalityrationality

 Group behavior under rules of interaction other than p
fractional

General theory of rational deciders
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 General theory of rational deciders



5. CONCLUSION

 Mimicking physical potentials of natural systems led 
to airplanes, car, computers, radars, etc.

 Mimicking the capacity of natural systems to 
resiliency and adaptation will lead to mechanismsresiliency and adaptation will lead to mechanisms 
that can survive in the artificial world of the “survival 
of the fittest”.
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