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Ⅰ、Problem Formulation
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• In this paper, we adopt the following Caputo definition for 
fractional derivative, which allows utilization of initial values of 
classical integer-order derivatives with known physical 
interpretations:
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Where n is an integer satisfying .1n nα− < ≤
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where α is the fractional commensurate order. x(t) ∈ Rn is 
the state, u(t) ∈ Rm is the control input, ∈ Rs is the 
measured output. A, B and C are known real constant 
matrices with appropriate dimensions.
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• Remark 1 : In this paper, we adopt FO system to 
represent the remote system. The main reason is that 
many real-world physical systems are well characterized 
by FO state equation. So, it will make sense to do the 
stability and control problem about this system.
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• Remark 2 : Network traffic has a multifractal nature or a 
nonuniform behavior according to reference. It can be 
viewed as being composed of heavy-tailed processes 
which collectively determine this behavior. Therefore, 
network time-delay can be modeled like a fractional 
Gaussian noise process with fractional lower-order 
statistics. Hence, here we consider the FO state space 
system to model the random delay of the networked 
control system.
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• Before the Main results, we first give the definition of the 
Mittag-Leffler function, which will be used later.

• Definition:
It is a function defined by the following series
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The more general definition of the Mittag-Leffler function in 
two parameters is as follows
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Ⅱ、Main Results

• A、Controllability

• Definition: The FO time-varying system (1) is said to be 
controllable on [t0,tf] if and only if for any initial state x(t0) 
and final state x(tf), there exists a control function u(t) 
defined on [t0,tf] which can drive the initial state x(t0) to 
the final state x(tf).
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• Now, we will show that the controllability condition of FO time-
varying system (1) is the same as the one of the following system:

See the paper Page 2 of our paper.

There exist several well-known stabilization methods for the 
FO system, we have discussed state feedback controller 
design problem for the FO system in another paper. So in this 
paper, we adopt the static and dynamic output feedback 
control methods, respectively.
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• B1、Static Output Feedback Controller Design
• For the FO system (1) with time-varying delay in the control, 

we can obtain

Now let H(t) satisfy the following equation, which has the 
same controllability condition of the system (1) :

(5)
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• then, from the above equation,

assuming that the initial condition of x(t) and H(t) are the 
same:

Here, we set                          , and let the control law  

(6)

(7)
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be a stabilizing control for the system (5).

Then H(t) → 0, and from (6) and (7) we have

Finally, we can obtain

x(t) →0 as H(t) →0 .
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• So, the system (5) can be expressed as follows:

Then, we can have the following stability result.

(8)
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• B2、Stability Analysis

• Theorem 1 : The control law (7) applied to system (5) leads to the 
closed-loop form (8) with order 1 ≤ α < 2. Then, if there exist the 
nonsingular matrix N, and symmetric matrix P > 0, the following 
conditions are satisfied :

(9)
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• and the following equation constraint satisfied

then, the state x(t) is stable. Furthermore if (9) and (10) are 
feasible, then a static output feedback controller is given
by K = NM−1.

The Proof for this Theorem can be found in Page 3 of our paper.

(10)
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• Theorem 2 : The control law (7) applied to system (5) leads to the 
closed-loop form (8) with order 0 < α < 1. Then, if there exist the 
matrices Q > 0 and N, the following conditions is satisfied

where

then, the state x(t) is stable. Furthermore if (11) is feasible, 
then a static output feedback controller is given by K = NM−1.

The Proof can be found in the paper of Page 3 and 4.

(11)
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C1、Dynamic Output Feedback Controller Design

• Let W(t) satisfy the following equation, which has the same 
controllability condition of the system (1)

(12)

Now, we consider the following dynamic output feedback 
controller for the system (12):

(13)
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• C2、Stability Analysis

• Theorem 3 : The control law (13) applied to system (12) leads to 
the closed-loop form with order 1 ≤ α < 2. Then, if there exist the 
symmetric matrices X > 0 and Y > 0, the following conditions are 
satisfied :
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• Furthermore a desired dynamic output feedback controller is given 
in the form of (13) with parameters as follows

where S and W are any nonsingular matrices satisfying

The Proof for this Theorem can be found in Page 4 of our paper.

(14)

(15)
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• Theorem 4 : The control law (13) applied to system (12) leads to 
the closed-loop form with order 0 < α < 1. Then, if there exist the 
matrices                      and symmetric matrix X > 0 and Y > 0, the 
following conditions are satisfied

Furthermore a desired dynamic output feedback controller is 
given in the form of (13) with parameters as in (14), where S
and W are any nonsingular matrices satisfying (15).

The Proof can be found in the paper of Page 4 and 5.
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III 、Simulation
• Example 1: Static output feedback control case:
• We consider the FO system (1)-(2) of order 0<ɑ<2 with scalar 

parameters as follows:

(16)
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where B(t) is a white noise, and τ0 = 0.9, l= 0.1 are given, 
and the initial condition is 0.1. β is the time fractional-order, 
and is also given for different cases. The time-varying delay 
is shown in Fig. 2 for β = 0.5.
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• The system is simulated in continuous-time and the static output 
feedback control is also implemented in the continuous form and 
the final control law can be obtained easily.

• Then, we use the designed controller with the parameter K 
obtained form the equality constraint LMI in Theorem 1 or 2 by 
using Matlab LMI Toolbox to control the system (16), the resulting 
system response x(t) are presented. Considering different orders α, 
Fig. 3 and 4 show the system response x(t) for 1 ≤ α < 2 and 0 < α 
< 1, respectively. As we can see from them, the system response is 
faster for values of αnear to 1.
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• Example 2: Dynamic output feedback control case:
• We consider the FO system (1)-(2) of order 0<ɑ<2 with the 

parameters as follows:
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where B(t) is a white noise, and τ0 = 0.1, l= 0.1 are given, 
and the initial condition is 0.1. Then we use the designed 
controller with the parameters in (13) obtained from the LMI 
in Theorem 3 and 4 by using Matlab to control the system 
(1)-(2) with the parameters above. 

The resulting system response x(t) are presented. Considering 
different orders α, Fig. 5 shows the system response of x1(t)
for 1 ≤ α < 2 and Fig. 6 depicts the system response of x2(t) 
for 0 < α < 1, respectively. As we can see from them, the 
system response is faster for values of αnear to 1.
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IV 、Conclusion

• The problem of remote output feedback stabilization for 
fractional-order systems with input time-varying delay of 
0 < α < 2 via communication networks has been 
investigated. 

• This problem leads to the problem of stabilizing an open-
loop unstable FO system with time-varying delay. 
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• We use the receding horizon method to design static and 
dynamic output feedback control law which explicitly 
takes into account an estimation of the delay dynamics 
that sets the poles of the closed-loop system.

• Finally, we have presented some simulations showing 
the effectiveness of the proposed controller to stabilize a 
FO system with input time-varying delays when the delay 
is estimated.
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Questions ?

Thanks for your attention
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