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Figure 1: Portrayal of a shipboard power systems
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Introduction
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• Inherent cross-regulation behavior is expected due to the propagation of 
power electronic switching converters in the composition of power 
systems architectures
– Converter controllers are built to be local
– No consideration of coupling dependencies with other parts of the 

system 
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Figure 2: Shipboard power system figure showcasing converters interrelationship



Motivations
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• Shipboard Power Systems
– All electric ship vision

• Electric drive
• Integrated Power Systems
• Zonal Distribution Systems

– Crew force optimization trend
• Cost reductions enabled by autonomous operation with reduced crew

• Enabling Technology – System Automation
– Traditional control strategies are based on linearized power system 

models which are not sufficient due to large system perturbations
• Pulse-power loads
• Nonlinear interactions between system components

• A measure of observability of such systems will allow one to 
quantify their operational performance
– Incorporation of nonlinear dynamics of converters  and 

electromechanical behavior of generators and loads



Specific Problem Statement

• What is being sensed, observed, controlled? Effects? 

• Observability issues in shipboard power systems

– System model

– Declaring observability

– How to quantify observability?
• Static case where observabilty measure is monitored as the system 

approaches the maximum loading point
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Observability Formulation
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– f - set of non-linear differential equations - model dependent
– g - non-linear algebraic equations
– x  - is the set of dynamic state variables and the set of static variables
– u  - independent control parameters
– N - network parameters
– h - set of nonlinear algebraic equations related to measurements
– p - measurement vector
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( , )
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• The general model used to investigate power system dynamics is that of 
the Differential Algebraic Equations (DAE) type in (1)



Observability Formulation (cont.)
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• A more generalized form of F(.) is given by

( )( , , ) 0 , , , 0F x x N u G x x u N− = ≡ =  (3)
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• If we let indices s and r be the differentiation indices for the system (F) and 
observation (p) equations respectively, then
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• The observability formulation derived from the generalized form of (2) is 
given in terms of the Jacobian: 

(8)1: ( )

2 : ( ) is constant rank on S

x w
O

x w

O

G G
rank J n rank

H H
rank J

 
= +  

 





x x w
O

x x w

G G G
J

H H H
 

=  
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



( )[ , ]  max( , 1)w x x x r sσ σ= = + 

(6)

(7)

• The system is observable if the following two conditions hold:

Observability Formulation (cont.)
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• The condition number of the observability Jacobian is the metric used and it 
is defined as:

where  are the singular values obtained from a singular value 
decomposition of the observability Jacobian

( )
( )

max

min

O

O

J
J

λ
η

λ
= (9)

• The condition number is monitored along a given system load profile

• Smallest value indicates stronger observability (Jo is further from being 
singular)

• As increases the matrix is becoming ill-conditioned (system is less observable)

Observability Metric



Model Development for the Shipboard 
Power System

10Figure 3: Multiconverter shipboard power system
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generators and loads, the DAE model of 
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Equipment Representation: 
Dynamic or Static?
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Figure 4: System state transitions due to a perturbation



Observability Formulation:  Example
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Observability Formulation  (cont.)
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Figure 5: Simplified example of a shipboard power system

• In a faulted state, converter dynamics 
are of interest and the DAE model is 
given by
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Example 1: Load increase at bus # 5
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Figure 6: Simplified example of a shipboard power system
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• With generator power at bus # 2 and load at bus # 4 kept constant the system 
model is described by:

1,1 1,2 1,3
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0 0 0
0 0 0 0

0 0 0
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0 0 0 0 0
0 0 0 0 0
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j j j
j j

j j j
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j j
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j

 
 
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 
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 
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• And setting the differentiation indices r = s = 1, the observability Jacobian has 
the following general form:



Example 1 (cont.)
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General Observations
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• As the system reaches maximum loading condition the observability 
Jacobian is close to becoming singular
• Smallest singular value approaching zero
• The condition number increases significantly

• Indicating duality between loss of observability and unstable point 
(max loading condition)

• For the purpose of system control this duality can be exploited
• The observability criterion can be used as a metric to identify system 

performance
• Allow one to foresee actions to avoid unwanted changes in the 

system



Bilateral Loading Studies
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• With generator power at bus # 2 kept constant and load at bus # 4 and # 5 varied 
simultaneously the system model of Fig. 4 is described by:

Figure 10: Simplified example of a shipboard power system
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where

• Setting the differentiation indices r = s = 1, the observability Jacobian has the 
following general form:
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• Load at buses 4 and 5 in Fig. 4 are varied through the scalar quantity α (increased 
monotonically) according to the following equation:
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where

Figure 11: Simplified example of a shipboard power 
system
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• The observability Jacobian is analyzed along the Vα profile of the system

• For each point along the upper Vα curve
• a singular value decomposition of the observability Jacobian is performed and 

the resulting condition number is extracted
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Figure 12: Vα curve for load buses 4 and 5 (top) and condition number vs α (bottom)
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• As a second case study, ΔωPM and Δωpump have been varied for a total system load 
increment of 1% each time α is incremented, i.e. ΔωPM + Δωpump = 0.01.

Figure 13: Vα curves and condition number vs α for different values of ΔωPM and Δωpump

ΔωPM = 0.003  Δωpump = 0.007  
MAX=33.03  αMAX=120

ΔωPM = 0.007  Δωpump = 0.003  
MAX =27.83  αMAX =98

ΔωPM = 0.004  Δωpump = 0.006  
MAX =26.66  αMAX =139

ΔωPM = 0.006  Δωpump = 0.004  
MAX =49.88  αMAX =114

0 20 40 60 80 100 120

0.8

1

1.2

1.4

α

v4
, v

5 
in

 p
u

Bus Voltage

 

 
v4
v5

0 20 40 60 80 100 120
0

10

20

30

40
Condition Number

α

η

0 10 20 30 40 50 60 70 80 90 100

0.8

1

1.2

1.4

α

v4
, v

5 
in

 p
u

Bus Voltage

 

 
v4
v5

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30
Condition Number

α

η

0 20 40 60 80 100 120 140

0.8

1

1.2

1.4

α

v4
, v

5 
in

 p
u

Bus Voltage

 

 
v4
v5

0 20 40 60 80 100 120 140
0

10

20

30
Condition Number

α

η

0 20 40 60 80 100 120

0.8

1

1.2

1.4

α

v4
, v

5 
in

 p
u

Bus Voltage

 

 
v4
v5

0 20 40 60 80 100 120
0

20

40

60
Condition Number

α

η



Bilateral Loading Studies (cont.)
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• A family of  α curves could be of interest as it would provide a system operator 
with information of how the system behaves depending on the values of α, ΔωPM
and Δωpump,and initial conditions   
• With this information one can foresee actions that would avoid unwanted 

changes in the system 

Figure 14: Family of  α curves
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Conclusions

• The observability formulation was applied to an equivalent DC system 
were observability measure was the focus of study

• This measure called condition number provided information on how far 
the system is from loosing observability

• Static cases were presented were the condition number was evaluated at 
each operating point along a load profile.

• Future work: 
– Perturbation of initial conditions on static cases need to be performed 

as it would provide an observability threshold
– Dynamic cases are to be investigated were observability is tracked 

along system states trajectories

17



Questions?

The authors would like to thank the US office of 
Naval Research for their financial support 
under grant no. N00014-10-1-0195


	Slide Number 1
	Presentation Outline
	Introduction
	Motivations
	Specific Problem Statement
	Observability Formulation
	Observability Formulation (cont.)
	Observability Formulation (cont.)
	Observability Metric
	Model Development for the Shipboard Power System
	Equipment Representation: �Dynamic or Static?
	Observability Formulation:  Example
	Observability Formulation  (cont.)
	Example 1: Load increase at bus # 5
	Example 1 (cont.)
	General Observations
	Bilateral Loading Studies
	Bilateral Loading  Studies (cont.)
	Bilateral Loading Studies (cont.)
	Bilateral Loading Studies (cont.)
	Bilateral Loading Studies (cont.)
	Bilateral Loading Studies (cont.)
	Conclusions
	Slide Number 24

