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Electric Power GridElectric Power Grid

• The electric power grid is a complex adaptive system consisting of 
a range of energy sources including fossil fuel, nuclear, renewable 
resources and energy storage with many operational levels andresources, and energy storage with many operational levels and 
layers (including power plants, transmission and distribution 
networks and control centers). 

• The interactions of various power system elements, including 
physical components with humans-in-the-loop, further increases 
the complexity of the power grid. p y p g
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Electric Power GridElectric Power Grid

• On the other hand, the diversity of the time scales involved in the 
operation of different power system elements, further adds to this 
complexitycomplexity.

• Time scales for various control and operation tasks can be as short 
several microseconds and as long as several years which makes itseveral microseconds and as long as several years, which makes it 
even more difficult to model, analyze, simulate, control and operate a 
power grid
• North American power gridp g
• 20th century
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Electric Power GridElectric Power Grid

• Today, controllers are mostly designed based on linearized 
models of the power system obtained around some nominal 
operating pointsoperating points.

• These designs do not guarantee robustness, optimality and, 
good and consistent performance over a wide range of 
operating conditionsoperating conditions.

• On the other hand, robust and optimal controllers can be 
designed based on H and other classical techniques but these 

i i k l d d t hi h d d lrequire precise knowledge and accurate high order models.

• The practical implementation of such controllers for a real power 
system is difficult and cumbersome.
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Electric Power GridElectric Power Grid

• Classical optimization techniques are mostly able to find local 
optimum solutions for power system optimization problems but 
intelligent  optimization techniques are able to find near-optimal 
global solutions.

• To ensure improved efficiency, reliability, security and 
sustainability of power & energy systems, advanced 
computational methods are needed to embed intelligence in the 
grid – the birth of smart energy grids.
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Smart Grid
A smart grid must have certain basic functions forA smart grid must have certain basic functions for 
modernization of the grid (as indicated in the Energy 
Independence and Security Act (EISA) of 2007), including:
 Self-healing
 Fault-tolerant
 Dynamic integration of all forms of energy generation & storage

D i ti i ti f id ti d ith f ll Dynamic optimization of grid operation and resources with full 
cyber-security

 Demand-response, demand-side resources and energy-efficient 
resourcesresources

 Electricity clients’ active participation
 Reliability, power quality, security and efficiency.

Smart Grid = [Intelligence, Bidirectional Power Flows, Smart Grid = [Intelligence, Bidirectional Power Flows, 
Generation Sources (Renewable, TraditionalGeneration Sources (Renewable, Traditional),,
Smart Devices (Loads, Energy Storage), Smart Devices (Loads, Energy Storage), 

Obj ti {Obj ti {Mi i iMi i i (C t E i i )(C t E i i )
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Maximum Utilization of Renewable Energy Maximum Utilization of Renewable Energy 
in a Smart Microgridin a Smart Microgrid

ComputationalComputational
tools are needed for 
building resilience:
• Predictions of wind &

Min. Power Min. Power 
Flow fromFlow from

Max. Power Flow to Max. Power Flow to 
the Gridthe Grid

solar energy,
• Forecasting of loads &     

reserves, 
• Dynamic dispatch &

D namic

Flow from Flow from 
the Gridthe Grid

the Gridthe Grid

Time of Use Time of Use 
RatesRates

• Dynamic dispatch, & 
• Handle uncertainties &  

variability.

Dynamic 
Stochastic 

Energy 
Management 

Systemy
(DS-EMS)
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Enabling CEnabling C33 Technologies (with Challenges)Technologies (with Challenges)
• A skyscraper is designed to withstand a massive earthquake; a bridge/arch sways in• A skyscraper is designed to withstand a massive earthquake; a bridge/arch sways in 

the wind to without collapsing. 
• Plug-and-play technology. 
• An advanced resilient design is needed for smart grids.

• Communication (includes information systems) 
• Intelligent sensing and communication devices for processing of information.
• Smart pricing – real time (consumers use less if they know the cost)Smart pricing real time (consumers use less if they know the cost).
• Smart grid devices and intelligent in-home energy management systems.

• Control 
Sit ti l A (I t lli t ki ili ) R l ti• Situational Awareness (Intelligent sense-making, resilience) - Real-time 
monitoring and control

• Load peak shaving technologies – Off-peak hours intelligently scheduled 
(especially for charging plug-in vehicles).( p y g g p g )

• Real-time dynamic reconfiguration.

• Computation  
Estimation & Forecasting models Load wind and solar energies reserve
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Computational Intelligence Computational Intelligence 
(A Smart Grid Friendly Description)(A Smart Grid Friendly Description)

Computational intelligence (CI) can be defined as
computational models and tools of intelligence

(A Smart Grid Friendly Description)(A Smart Grid Friendly Description)

• capable of taking large raw numerical sensory data directly, 
• processing them by exploiting the representational parallelism 

and pipelining the problem, 
• generating reliable just in time responses• generating reliable just-in-time responses 
• with high fault tolerance.

Intelligence without Intelligence without 
ti  ti  computing computing 

is like bird without wingsis like bird without wings
G K V th
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A Promising BrainA Promising Brain--Like Computational Approach:Like Computational Approach:
Adaptive Critic Designs (ACDs)Adaptive Critic Designs (ACDs)

• The Adaptive critic designs have the potential of 
replicating critical aspects of brain like intelligence:replicating critical aspects of brain-like intelligence:
- ability to cope with a large number of variables in
parallel, in real time, in a noisy nonlinear non-
stationary environment

• The origins of ACDs are ideas synthesized from combinedg y
concepts of approximate dynamic programming, 
reinforcement learning, and methods for obtaining
derivatives (such as backpropagation)derivatives (such as backpropagation). 

• ACDs are promising methods to solve dynamic optimization 
d ti l t l bl
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Adaptive Critic DesignsAdaptive Critic Designs

• A family of ACDs was proposed by Werbos (currently at 
NSF, PD) in 1977 as a new optimization technique 
combining concepts of reinforcement learning and 
approximate dynamic programming. 

• The adaptive critic method determines optimal control• The adaptive critic method determines optimal control 
laws for a system by successively adapting two neural 
networks, namely an Action network (which dispenses 
control signals also known as the Actor) and a Criticcontrol signals, also known as the Actor) and a Critic 
network (which learns the desired performance index for 
some function associated with the performance index). 

• The Actor-Critic combination approximates the Hamilton-
Jacobi-Bellman equation associated with optimal control 
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An ACD Approach for Dynamic Scheduling, An ACD Approach for Dynamic Scheduling, 
Control and OptimizationControl and Optimization
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Wide Area Monitoring Systems (WAMS)Wide Area Monitoring Systems (WAMS)
• WAMS based on synchronized phasor measurements units (PMUs) allows• WAMS based on synchronized phasor measurements units (PMUs) allows 

for:
• Grid observability
• Dynamic state estimation

D i t t t it i• Dynamic generator status monitoring
• Synchronized wide-area voltage and current monitoring
• Implementing various WAC schemes that require remote signals.

T d t WAMS b d WAC h h b f d• To date – WAMS based WAC schemes have been focused on:
• Transient/small-signal stabilizing control to mitigate angle stability
• Secondary voltage control to mitigate voltage instability.

D l t f t id t ti fl t ll t• Development of a system-wide automatic power flow controller to 
dynamically control a power system to its optimal operating point has 
received little attention.

• 1Fardanesh proposed a concept of an ideal control scenario for power 
systems, where optimal operating conditions were achieved instantaneously 
by some closed-loop control algorithms, but how to design such a control 
algorithm remains a challenge

© G. Kumar Venayagamoorthy – A Keynote Presentation at the Fourth International Symposium on Resilient Control Systems,  Boise, ID, USA, August 9, 2011
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Optimal Power Flow Optimal Power Flow 

• Optimal power flow (OPF) or Security constrained OPF (CSOPF) is 
based on the steady-state optimization without considerations for 
local controller and load dynamics.

• Unforeseen short-term variations in load/generation between two 
dispatch times (5 min tes) is handled b simple linear controllersdispatch times (5 minutes) is handled by simple linear controllers, 
with little or no system-wide optimization.

• Active power balancing is carried out by Automatic Generation• Active power balancing is carried out by Automatic Generation 
Control (AGC).

• For reactive power support, locally-controlled reactive devices areFor reactive power support, locally controlled reactive devices are 
used for voltage regulation (AVRs, switched capacitors, FACTS, etc).
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Wind Power IntegrationWind Power Integration

• With increasing penetration of intermittent renewable energy 
resources, power system operation is faced with more uncertainty 
and variability1.y

• With state-of-the-art wind forecasting methods, the hour-ahead 
forecast errors in wind power for a single wind farm are still around 
10 to 15%2.

• Power system operation is based on using load forecasting (low 
) d i ti EMS ith d t i i ti it t i derror) and existing EMS with deterministic security-constrained 

commitment and  dispatch processes.

• These conservative operations leads to large amount of wind power• These conservative operations leads to large amount of wind power 
curtailment3.

1D. Maggio, C. D’Annunzio, S. Huang, C. Thompson, “Outstanding questions around increasing variable generation penetration in the ERCOT system,” in Proc. 2010
IEEE PES General Meeting Minneapolis MN 25 29 Jul 2010
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2K. Porter and J. Rogers, “Status of centralized wind power forecasting in North America: May 2009 - May 2010,” NREL subcontract report, NREL/SR-550-47853, Apr 2010.
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WAMSWAMS--Based Dynamic Stochastic OPF ControlBased Dynamic Stochastic OPF Control
• With variations in generations/loads significant power flow redistribution can• With variations in generations/loads, significant power flow redistribution can 

occur in a short period. 
• Line-power overloading 
• Over/under bus voltages.

• Smart grid:
• MIMO 
• Non-stationaryNon stationary
• complex
• nonlinear
• dynamic system.

• WAMS based DSOPF control for:
• Optimal and dynamic control of both active and reactive powers
• High uncertainty and variability in a smart grid environment.g u ce ta ty a d a ab ty a s a t g d e o e t

• 1,2A computational approach - adaptive critic designs (ACDs) is used in the 
development of the DSOPF controller.
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Smart GridSmart Grid

Wide Area Measurements Based Monitoring Wide Area Measurements Based Monitoring 

Wide Area Measurements Based Dynamic Stochastic Optimal ControllerWide Area Measurements Based Dynamic Stochastic Optimal Controller
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General DSOPF Framework for General DSOPF Framework for 12 12 Bus Test SystemBus Test System
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DSOPF FormulationDSOPF Formulation
• Six components to the objective function (Utility Function, U)p j ( y , )

• Area control error, UACE
• System voltage deviation, Uvolt
• System line loading, ULine

Total fuel cost U• Total fuel cost, UFuel
• Total line loss, ULoss
• Control effort, UCtrl.

( ) ( ) ( ) ( )U k U k U k U k• Utility function, U, is thus defined as: ( ) ( ) ( ) ( )
          ( ) ( ) ( )

ACE Volt Line

Fuel Loss Ctrl

U k U k U k U k
U k U k U k

  

  
2 2( ) ( ) ( )U k w f k w P k   

 4  4  4  4

2 2 2 2
1 11

2 2 2
2 - 6 2 - 6

( ( ) 1) ( ( ) 1) ( ( ) 1) ( ( ) 1)

( ) ( ) ( )

             ( ) / ( ) /

( ) || ( ) || || ( ) || /

( ) [

AC E freq tie tie

freq f tie P tie

Volt volt volt V

S k S k S k S k

U k w f k w P k

w y k m w y k m

U k w V k w y k m

U k    

   

 

  

]25 16 64 78( ( ) 1) ( ( ) 1) ( ( ) 1) ( ( ) 1)( ) [ S k S k S k S k
Line lineU k w e e e e      

2 3 4

15

* 2 * 2

]

( ) [ ( ) ( ) ( ) ]

( ) ( ) [ ( ) / ]

offset
Fuel fuel G G G

offset
Loss loss loss loss Loss loss

U k w F k F k F k F

U k w P k w y k m P

   

  

© G. Kumar Venayagamoorthy – A Keynote Presentation at the Fourth International Symposium on Resilient Control Systems,  Boise, ID, USA, August 9, 2011
25

* 2 * 2
2 - 4 2 - 4

2 2 2 2
1-3 4 -6

( ) || ( ) || || ( ) ||

            || ( ) || || ( ) ||
C trl Pg G Vg G

Pg Pg Vg Vg

U k w P k w V k

w n u k w n u k

   

 



Dual Heuristic Programming (DHP) based DSOPFDual Heuristic Programming (DHP) based DSOPF

ˆ̂( 1)k  

J Liang, R Harley, G Venayagamoorthy, "Adaptive Critic Design based Dynamic Optimal Power Flow Controller for a Smart Grid," 
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Model NetworkModel Network
• A recurrent neural network based model is developed for identification of the• A recurrent neural network based model is developed for identification of the 

power system dynamics
• 21 inputs (y(k) and u(k)) and 15 outputs (y(k))
• Model predicts y(k) 1s ahead

• Em(k) = ||em(k)||2 = ||y(k) – ŷ(k)||2



( , , , , ,
, , , , ,

, , , , )

f V V V V

V S S S S

Ptie Pg Pg Pg Loss

diag m m m m m
m m m m m
m m m m m

( , , ,

, , )
Pg Pg Pg

Vg Vg Vg

diag
n n n

n n n
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Critic Network LearningCritic Network Learning
• A RNN based DHP critic network learns online to approximate the derivative pp

of J(k+1) with respect to y(k+1), denoted as λ(k+1), by minimizing the 
following error:

2( ) || ( ) ||c cE k e k
( ) ( ) ( )ˆ( ) ( ) {
( ) ( ) ( )

ˆ ˆ( 1) ( 1) ( )ˆ

c
U k U k u ke k k
y k u k y k

y k y k u k

   
  

  
    ( 1) ( 1) ( )           ( 1)[ ]}

( ) ( ) ( )
y k y k u kk

y k u k y k
     

  
  

ˆ( 1)k ( 1)k  
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Optimal Control Law ApproximationOptimal Control Law Approximation
• A RNN based action network learns to approximate the optimal control law pp p

by minimizing:
2ˆ ( )( ) J kE k 

( )
( )

ˆ ˆ( ) ( ) ( 1)ˆ( 1)
( ) ( ) ( )

aE k
u k

J k U k y kk
k k k





   
  
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( )

( ) ( ) ( )u k u k u k


  

ˆ( 1)k ( 1)k  
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12 12 Bus Test System with AGCsBus Test System with AGCs

1 K
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Performance Evaluation of the DSOPF ControllerPerformance Evaluation of the DSOPF Controller

• The 12-bus system’s steady states at D1, D3 and D7, driven by either 
the AGC2 or the DSOPF control, are compared.

D1 D3 D7

AGC2 DSOPF AGC2 DSOPF AGC2 DSOPF

TABLE I. Steady-State Comparison of DSOPF Controller and AGC
(Fuel: k$/h, f: Hz, Ptie: MW, Ploss: MW, V: pu, S: pu)

AGC2 DSOPF AGC2 DSOPF AGC2 DSOPF

Utility 8.314 7.211 Utility 10.076 8.811 Utility 10.589 10.120

Fuel 43.41 43.24 Fuel 43.92 43.61 Fuel 46.37 45.98

f 60.000 60.001 f 60.000 60.003 f 60.000 60.003

Ptie 480.0 479.6 Ptie 480.0 478.9 Ptie 480.0 479.1

Ploss 46.5 40.5 Ploss 46.8 39.1 Ploss 48.6 41.9

UVolt 2.362 1.142 UVolt 3.658 2.391 UVolt 1.828 1.586

V4 0.965 0.976 V4 0.965 0.967 V4 0.973 0.973

V5 0.988 1.007 V5 0.973 1.003 V5 0.988 1.007

ULine 1.878 1.813 ULine 1.838 1.754 ULine 1.883 1.793

S25 0.75 0.71 S25 0.81 0.75 S25 0.77 0.73

S16 0.80 0.76 S16 0.56 0.56 S16 0.78 0.71
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S16 0.80 0.76 S16 0.56 0.56 S16 0.78 0.71

S78 0.67 0.63 S78 0.75 0.68 S78 0.69 0.65

UCtrl 0.202 0.602 UCtrl 0.192 0.668 UCtrl 0.032 0.337



Performance Evaluation Performance Evaluation –– Load TrippingLoad Tripping
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Performance Evaluation Performance Evaluation –– Transmission Line TrippingTransmission Line Tripping
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Performance Evaluation Performance Evaluation –– Large Load VariationLarge Load Variation

Variable Constant-Power Load (MW, MVAr)
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OutlineOutline

• Introduction

• Smart Grid

• Emerging Computational Methods

• Wide Area Control Systems

Pl i El t i V hi l G2V d V2G T ti• Plug-in Electric Vehicles – G2V and V2G Transactions

• Brain2Grid Project

• Summary
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Plug-in Vehicles

 Integration of large number of 
power electronics devices to 
the grid 

 Bidirectional power flows –
Grid-to-Vehicle (G2V) and 
Vehicle-to-Grid (V2G)

 Grid services like regulation, 
spinning reserve 

 Power transactions with the 
varying price, large power 
swings are inevitable

 Intelligent scheduling for the g g
charging and discharging of 
the vehicles. 
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Intelligent Scheduling of EV Storage Capacity Intelligent Scheduling of EV Storage Capacity 
for Customer and Utility Profit Maximizationfor Customer and Utility Profit Maximizationfor Customer and Utility Profit Maximizationfor Customer and Utility Profit Maximization

• Maximize profit for vehicles in a SmartPark by scheduling grid 
transactions based on price curves.transactions based on price curves.

• Find a suitable good solution much quicker than simply trying every 
possible combination.

• Use an algorithm that is scalable as the number of vehicles time• Use an algorithm that is scalable as the number of vehicles, time 
steps, and constraints used are increased.

RT PricingRT Pricing
Vehicle 

ID
Buying 
Hours Selling Hours

Hours 
Present

1 4 7 16 6 14 17 3 17
SchedulesSchedules

1 4,7,16 6,14,17 3‐17

2 ‐ 15 15‐16

3 13 ‐ 12‐13

4 16 17 16‐17

5 16 17 16‐175 6 7 6 7

6 7 6,14 5‐16

7 ‐ 1 1‐4

8 2,7,16 4,14,18 2‐24

9 7 6,8 5‐8
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Profit MaximizationProfit Maximization

( )*( )Max AvailableP t kWH kWHC 
 (1)

Cost 
(Charge)

argCh e

C
Eff



arg( ) * ( * )*Available Max Disch eR P t kWH SoC kWH Eff 

(1)

(2)Revenue
(Discharge)

( )
DepTime

i ij ij
j ArrTime

Objective Function R C


  (3)
( g )

Profit
RT PricingRT Pricing

Where,
C = resulting cost of charging that vehicle
R = revenue made by selling from that vehicle
P(t) = electricity price time at t

SchedulesSchedules

t = the optimal buy/sell time
kWHAvailable = Kilowatt*Hrs in the battery
kWHMax = maximum battery capacity
SoC = desired departure state of charge
EffCh = charging efficiency
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EffCharge  charging efficiency
EffDischarge = inverter efficiency 
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SmartPark Schedule SmartPark Schedule 88//77//20082008
H B i V hi l B S lli V hi l ID S ll 13 0 45 1Hour Buying Vehicle

ID
Buys Selling Vehicle ID Sells

1 - 0 7,10,47 3

2 8 1 39 1

13 - 0 45 1

14

-

0 1,6,8,11,12,14,15,17,
26,29,31,33,34,36,37,

40,43,44,46,48

20

15 12 33 2 2 32 23 25 1 - 0

4 1 1 8 1

5 14 1 22 1

6 34 1 1 6 9 25 49 5

15 12, 33 2 2, 32 2

16 1,4,5,8,14,15,17,19,
20,19,31,34,36,37,
38,40,41,43,45,46,

50

21

-

0

6 34 1 1,6,9,25,49 5

7 1,6,8,9,10,21,23,
24,27,30,33,36,
41,45,47,48,49

17

-

0

8 40 1 9 47 2

17 13,35,42 3 1,4,5,37,38,46 6

18

-

0 8,12,13,14,15,17,19,
20,29,31,33,34,35,36,

40,41,42,43,45,50

20

8 40 1 9, 47 2

9 15, 31 2 43, 49 2

10 12,17,37,43,44 5 - 0

11 26, 46 2 21,23,28 3

19 - 0 - 0

20 - 0 - 0

21 - 0 - 0

22 - 0 - 0
12

-
0 10,16,24,27,30,

41
6 23 - 0 - 0

24 - 0 - 0
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Vehicle Owners’ Schedules Vehicle Owners’ Schedules --
88//77//2008200888//77//20082008

Vehicle 
ID

Buying 
Hours Selling Hours

Hours 
Presentg

1 4,7,16 6,14,17 3‐17

2 ‐ 15 15‐16

3 13 12 13

SchedulesSchedules

RT PricingRT Pricing

3 13 ‐ 12‐13

4 16 17 16‐17

5 16 17 16‐17

6 7 6,14 5‐16

7 ‐ 1 1‐4

8 2,7,16 4,14,18 2‐24

9 7 6,8 5‐8

10 7 1,12 1‐13
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Comparison of 3 Different Price Curves for  Comparison of 3 Different Price Curves for  
Identical 50 Vehicle FleetIdentical 50 Vehicle FleetIdentical 50 Vehicle FleetIdentical 50 Vehicle Fleet

12/07/07

Date Case
Study

Power into
Lot (MWh)

Power out
of Lot
(MWh)

Net Power
Out (MW)

ProfitDate Case
Study

Power into
SmartPark 

(MWh)

Power out
of SmartPark

(MWh)

Net Power
Out (MW)

Profit

( )

12/07/07 CS1 0.0863 1.2412 1.1549 $112.45

CS2 3.1902 3.6094 0.4191 $190.74
+69.6%

( ) ( )

12/07/07 CS1 0.0863 1.2412 1.1549 $112.45

CS2 3.1902 3.6094 0.4191 $190.7404/07/07

04/07/08 CS1 0.0830 1.2379 1.1549 $190.65

CS2 2.8958 3.3845 0.4886 $334.51

08/07/08 CS1 0.0984 1.2533 1.1549 $128.42

+75.5%

+82 4%

04/07/08 CS1 0.0830 1.2379 1.1549 $190.65

CS2 2.8958 3.3845 0.4886 $334.51

08/07/08 CS1 0.0984 1.2533 1.1549 $128.42

CS2 3.5167 3.8271 0.3104 $234.22
+82.4%

CS2 3.5167 3.8271 0.3104 $234.22

“Intelligent Scheduling of Hybrid and Electric Vehicle Storage Capacity in a Parking Lot for

08/07/07
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Intelligent Scheduling of Hybrid and Electric Vehicle Storage Capacity in a Parking Lot for 
Profit Maximization in Grid Power Transactions”, IEEE Energy 2030, Atlanta, GA, USA, 

November 17-18, 2008, pp. 1-8.



Grid StabilityGrid Stability
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Mitra P Venayagamoorthy GK “Wide Area Control for Improving Stability of a Power System
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http://rtpis.org

Mitra P, Venayagamoorthy GK, Wide Area Control for Improving Stability of a Power System 
with Plug-in Electric Vehicles”, IET Proceedings of Generation, Transmission and Distribution, 

Vol. 4, No. 10, 2010, pp. 1151-1163
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Grid StabilityGrid Stability
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Impact of SmartPark Sudden Impact of SmartPark Sudden 
DischargingDischargingDischargingDischarging
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Impact of SmartPark for Sudden Impact of SmartPark for Sudden 
Transition from Discharging to ChargingTransition from Discharging to ChargingTransition from Discharging to Charging Transition from Discharging to Charging 

377

0 1 2 3 4 5 6 7 8 9 10
376.9

376.95

(a)

with local PSS
with WAC

376.8

377

377.2

e
c.
)

(a)

0 1 2 3 4 5 6 7 8 9 10

376.6

378d
 (r
a
d
/s
e

(b)

376

377

Sp
e
e
d

© G. Kumar Venayagamoorthy – A Keynote Presentation at the Fourth International Symposium on Resilient Control Systems,  Boise, ID, USA, August 9, 2011

0 1 2 3 4 5 6 7 8 9 10
(c)

45



SmartParks for Shock Absorbers for Wind Farms

230 kV
230 kV 230 kV
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PArea 1
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22 kV 13
ControllerPSP

P (P P ) (P P ) f 0

1 37 8
G311

22 kV
PL1 PL6PEV Parking lots SmartParks

PSP1-6 ≥ (Pw – Pwmin) – (PL1-6max – PL1-6), for > 0

PSP6-4 ≥ (Pwmax – Pw) – (PL6-4max – PL6-4), for > 0

P = Max [P P ]
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PSP = Max [PSP1-6, PSP6-4] 
Venayagamoorthy GK, Mitra P, “SmartPark Shock Absorbers for Wind Farms”, IEEE Transactions on Energy Conversion, to 

appear



Control of SmartPark as a Shock Absorber
A

abc
to 

dq0

x2

x2
+ √x sT1

1vabc
vd

vq
vpeak +_State-of-Charge 

Estimation

C.T.
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GRID

Average 
wind 

power

 2/3

Ki

+ dq0
to 
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P*

Perror
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iq-max*

i *
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i

Pulses
Delta 

Modulation

Battery

-

P.T.

Pref

- sT
i
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P Anti-wind up

error
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θ
Q Anti-wind up
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power
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θ Power 
CalculationPLL
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The duration of operation (tf - ti) 
of the shock absorber  
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Coordinated Control Strategy

 With an energy storage device, the limit on wind power 
generation imposed by pitch control during a wind gust can be 
relaxed to some extent and an optimal (maximum) utilization ofrelaxed to some extent and an optimal (maximum) utilization of 
the wind energy can be realized. 

 Charging/discharging operations by the SmartParks will Charging/discharging operations by the SmartParks will 
depend on the state of charge of the vehicle batteries. 

 Therefore, a continuous monitoring of the aggregated state 
of charge of the parking lots is necessary.

 A continuous monitoring of demand for wind power 
(commitment) is also needed.
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Coordination Control

- Demand (PD) 

Pitch Controller

+ 
Actual Wind 
Power (PW) 

PW - PD 

Rest of 
the 

Power

Pitch Controller
Reference 

Coordination
C t ll Power 

System Fuzzy Logic  
Controller Charging/ 

Discharging 
Command

Controller
PSP

Command
SOC 

Mitra P, Venayagamoorthy GK, “Intelligent Coordinated Control of a Wind Farm and Distributed SmartParks”, IEEE Industry 
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Rule Base for Coordination Control

Rule Base for Pitch Controller Reference Rule Base for Power Command of the SmartParks

SOC
PW – PD

NB NS Z PS PB

VL VH VH VH VH VH

SOC
PW – PD

NB NS Z PS PB

VL PB PS Z NB NB

L VH VH VH VH H

M VH VH VH H M

H VH VH H M L

L PB PS Z NB NB

M PB PB Z NB NB

H PB PB Z NS NB
VH VH H M L VL

H PB PB Z NS NB

VH PB PB Z NS NB

If the difference between available wind power and the demand is negative big
and the overall state of charge is medium then the pitch control reference is very 

high and the SmartPark power command is positive (discharging) big.
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Laboratory Implementation
 

Remote Workstation
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Time (sec.) 

Performance comparison with and without fuzzy logic controller for                          
demand = 350MW, SOC = 50% & wind speed change from 11 m/s to 13 m/s 52
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Time (sec.) 
Performance comparison with and without coordination controller when 

demand changed to 400 MW and wind speed dropped from 13 m/s to 11 m/s
53



OutlineOutline

• Introduction

• Smart Grid

• Emerging Computational Methods

• Wide Area Control Systems 

Pl i El t i V hi l G2V d V2G T ti• Plug-in Electric Vehicles – G2V and V2G Transactions

• RTPIS Lab and Brain2Grid Project

• Summary

© G. Kumar Venayagamoorthy – A Keynote Presentation at the Fourth International Symposium on Resilient Control Systems,  Boise, ID, USA, August 9, 2011
54



RTPIS Lab. Research ActivitiesRTPIS Lab. Research Activities
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BrainBrain22Grid ProjectGrid Project
An award from the NSF Office of the Emerging Frontiers in Research and Innovation (EFRI)An award from the NSF Office of the Emerging Frontiers in Research and Innovation (EFRI), 
under the topic Cognitive Optimization and Prediction: From Neural Systems to 
Neurotechnology (COPN). The title of the award is “EFRI-COPN: Neuroscience and Neural 
Networks for Engineering the Future Intelligent Electric Power Grid”.

The overarching goal 
of this multi-
disciplinary project is p y p j
to infuse more 
neurobiology into 
control systems, to 
make them more brainmake them more brain-
like and be able to 
carry out real-time 
control of complex 
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systems. 
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BrainBrain22Grid ProjectGrid Project
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Spiking Neural Networks for System IdentificationSpiking Neural Networks for System Identification
Firing Strength Classifier (FSC)
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The Challenge of Truly Getting Secure, Reliable and Greener The Challenge of Truly Getting Secure, Reliable and Greener –– Resilient Power GridResilient Power Grid

DSCS Technologies for Modeling Optimization Decision and Control of Smart GridsDSCS Technologies for Modeling, Optimization, Decision and Control of Smart Grids
• Dynamic
• Stochastic
• Computational – parallel and coordinated, and capable of handling multiple objectives
• Scalable
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• Scalable
Dynamic, Stochastic, Computational and Scalable Technologies for Smart Grids, Dynamic, Stochastic, Computational and Scalable Technologies for Smart Grids, IEEE IEEE 

Computational Intelligence MagazineComputational Intelligence Magazine (Special Issue on Smart Grids), pp. (Special Issue on Smart Grids), pp. 2222-- 3535, August , August 20112011



Computational Systems ThinkingComputational Systems Thinking

• Computational methods and models enable us to solve• Computational methods and models enable us to solve 
complex problems that seem impossible otherwise.

S hi ki i h d di h• Systems thinking is an approach to understanding how 
components in a system influence each other within an 
entirety and where solutions are derived based on coupled y p
dynamics.

• Computational thinking builds on the power and limits of• Computational thinking builds on the power and limits of 
computing processes.
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Computational Systems Thinking Machine (CSTM) Computational Systems Thinking Machine (CSTM) 

• To handle an evolving uncertain variable and complex• To handle an evolving, uncertain, variable and complex 
smart grid – three strands of thinking are needed for
• Sense-making

D i i ki• Decision-making
• Adaptation 

• In the center of all these strands exist a ‘real-time wealth of 
knowledge’
• Continuous refinement• Continuous refinement
• Learns and unlearns
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CoCo--existence of CSTMsexistence of CSTMs

C i t f CSTM i ti l f t id• Co-existence of CSTMs is essential for smart grid 
operations
• Harmony
• Coordination
• Communication
• Collaborate.
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Cellular Neural Networks for WAMSCellular Neural Networks for WAMS
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CNN Based WAMS
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G3
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CNN Based Wide Area Monitoring and Control System

ComputationComputation

CommunicationCommunication

ControlControl

Wide Area Monitoring and 
Control System

ControlControl

Bus voltage predictiong p

Speed deviation prediction

Luitel B, GK Venayagamoorthy, "Wide Area Monitoring in y g y g
Power Systems Using Cellular Neural Networks," IEEE 

Symposium Series on Computational Intelligence (SSCI) 
2011 - CIASG, April 11-15, 2011
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SummarySummary
• A smart grid can be viewed as a digital upgrade of the existing g g pg g

electricity infrastructure and the way forward for energizing our future.

• Advanced computational and information technologies (CSTMs) are 
needed for planning and optimization fast control of smart gridneeded for planning and optimization, fast control of smart grid 
elements and systems, processing of field data and fast coordination 
across the grid.

• Distributed and coordinated intelligence at all levels and across levels• Distributed and coordinated intelligence at all levels and across levels 
of the grid – generation, transmission and distribution is inevitable if a 
‘true smart grid’ is to be a reality and its benefits are to be harvested.

P t ti l i b fit f l i th i t ti l• Potential economic benefits of applying these emerging computational 
paradigms for smart grid operations are several including:
• avoiding widespread blackouts
• reducing congestion costs• reducing congestion costs
• minimizing energy costs and 
• maximizing emission reductions.
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• The electric power grid is smart with its own nervous and immune 
systems.
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G K V th PhD FIET FSAIEE SMIEEE

Thank you!Thank you!

G. Kumar Venayagamoorthy, PhD, FIET, FSAIEE, SMIEEE

Founder and Director of the Real-Time Power and Intelligent Systems Laboratory
Professor of Electrical and Computer EngineeringProfessor of Electrical and Computer Engineering (eff. 9/11)

Missouri University of Science and Technology, Rolla, MO, USA

http://www.mst.edu/~ganeshv
http //rtpis org &http://rtpis.org & 

http://brain2grid.org  

gkumar@ieee.org

August 9, 2011
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