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Objective

Use multi-agent concepts for consensus control of networked large scale

systems in the presence of channel noise.

Assumptions:

Subsystems are linear time invariant

Subsystems are identical and cooperate for a common goal

Subsystems exchange sensor data with each other

Undirected data exchange through weighted interconnections

Control is based on weighted feedback of sensor data

Subsystems are perturbed by noise in the communication channel

Noise is Gaussian white
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System Model

Consider a networked control system of identical subsystems

ẋi = Axi +Bui, i ∈ {1, · · · , N}

yi = Cxi

ui = K

N
∑

j=1

aij(sij − yi)

sij = yj + ηij

x ∈ Rn is the state vector

u ∈ Rm is the control input

y ∈ Rr is the measurement data

sij is the sensor data received by nodei from nodej

ηij are independent Gaussian white noise with mean zero

CovarianceE{ηi(t1)η
T
i (t2)} = Qδ(t1 − t2)

aij is the connection weight between subsystemsi andj

K is a gain matrix

System matricesA, B, andC are constant.
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Connectivity

Interconnection is undirected and connection weightaij = aji,

andaij = 0 for no interconnection.

L =



















∑

j a1j −a12 −a13 · · · −a1N

−a21
∑

j a2j −a23 · · · −a2N
...

...
...

. ..
...

−aN1 −aN2 −aN3 · · ·
∑

j aNj



















=





L11 L12

L21 L22





For an undirected graph, the eigenvalues ofL satisfy

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN ≤ λ∗ = 2max
i

{di} = 2max
i

∑

j

aij
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Connectivity

Let 1N−1 be a(N − 1)-dimensional column vector of 1’s. Then for the

transformationP

P =





1 0

1N−1 IN−1





we have P−1LP =





0 L12

0N−1 L22 − 1N−1L12





Thus the eigenvalues ofL22 − 1N−1L12 are same as the positive eigenvalues of

theL matrix, i.e.,{λ2, λ3, · · ·λN}.
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Definition

Mean Square Consensus:The multiagent system is said to be have reached mean

square consensus if

limt→∞ E{‖xi − xj‖
2} = 0 for any i 6= j

i.e., the subsystem trajectory will track that of the leaderwith zero mean square error.

Weak Mean Square Consensus:The multiagent system is said to have reached weak

mean square consensus if

limt→∞ E{‖xi − xj‖
2} = ε for any i 6= j

i.e., subsystem state will be only withinε-neighborhood of that of the leader.

Collective Weak Mean Square Consensus:The multiagent system is said to have

reached collective weak mean square consensus if

limt→∞ E{
∑N

i=1
‖xi − xj‖

2} = ε, for anyj
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Main Result

Theorem. Suppose the multiagent subsystem{A,B,C} is controllable and

observable, andA is stable. Denoteλ∗ as the the upper bound of the eigenvalues

of the connectivity submatrixL22 − 1N−1L12. Then there exists a gain matrixK

such that(A− λ∗BKC) is negative definite, and the networked multiagent

system is collectively weakly mean square consensusable, i.e., the leader-follower

state error converges to the bound

lim
t→∞

E
∑

i 6=k

‖xi(t)− xk(t)‖
2 →

q

γ2
, for any k

whereq = 1

2
Trace{H ⊗ BKQKTBT},H is a diagonal matrix with

hii =
∑

j a
2

ij +
∑

j a
2

1j , andγ2 = γ2(K) > 0.
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Proof

Take the first subsystem as the leader. Define the state error (disagreement)

between subsystemi and the leader

x̂i = xi − x1, 2 < i ≤ N

Define

x̂ = [x̂2 x̂3 . . . x̂N ]T

Then the error dynamics can be described by

˙̂x = [(IN−1 ⊗A)− (L22 − 1N−1L12)⊗BKC)]x̂+ (IN−1 ⊗BK)ψ

where the noise processψi(t) = ηi(t)− η1(t).
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Proof...

Rewrite the above equation as an Ito stochastic differential equation:

dx̂ = Âx̂ dt+ B̂ dW

where Â = [(IN−1 ⊗A)− (L22 − 1N−1L12)⊗BKC)]

B̂ = (IN−1 ⊗ BK)

W =
[

W1 W2 · · · WN

]T

where
E{W (t)} = 0

E{W (t)−W (τ))(W (t)−W (τ))T } = (t− τ)Q̂,

Q̂ = H ⊗Q

H = diagonal, hii =
∑

j

a
2

ij +
∑

j

a
2

1j ,

whereQ is the covariance matrix of the processesηi(t), i = 1, 2, · · ·N , which are

independent and have the same covariance matrix.
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Proof...

Consider the process{V (t), t ≥ 0} defined by

V (t) = V (x̂(t)) =
1

2
‖x̂(t)‖2

Using Ito’s lemma

dV (t) =
(

x̂
T
Âx̂+ q

)

dt+ x̂
T
B̂ dW

where

q =
1

2
Trace(B̂Q̂B̂

T ) =
1

2
Trace(H ⊗ BKQK

T
B

T )

Integrating over(0, t) and taking expectation,

EV (t) = EV (0) + E

∫ t

0

(

x̂
T
Âx̂) + q

)

dτ

Note thatÂ = (IN−1 ⊗ A)− (L22 − 1N−1L12)⊗BKC.
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Proof...

Choose the gain matrixK so thatÂ is negative definite with the bounds:

−γ1‖x̂‖
2 ≤ x̂

T
Âx̂ ≤ −γ2‖x̂‖

2
, γ1, γ2 > 0

then

EV (t) ≤
q

2γ2
+

(

EV (0)−
q

2γ2

)

e
−2γ2t

This shows that ast → ∞,

EV (t) →
q

2γ2

lim
t→∞

E‖x̂(t)‖2 →
q

γ2

lim
t→∞

E
∑

i

‖xi(t)− x1(t)‖
2 →

q

γ2

The expected state error between the leader and the followersystem converges to a certain

limit.
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Proof...

It can be shown1 that the eigenvalues of̂A = [(IN−1 ⊗A)− (L22 − 1N−1L12)⊗BKC)]

are same as those ofA− λiBKC, i = 2, 3, · · ·N ,

whereλi > 0 are the eigenvalues ofL22, with 0 < λ2 ≤ λ3 ≤ · · · ≤ λN ≤ λ∗.

Assume the system{A,B,C} is controllable and observable, andA is stable. Then there

exists aK̂ = K
λ∗

so that for arbitraryz ∈ Rn

z
T (A−BK̂C)z ≤ −δ1‖z‖

2
, δ1 > 0

z
T
Az ≤ −δ2‖z‖

2
, δ2 ≥ 0

⇒ z
T (A− λiBKC)z ≤ −

( λi

λ∗
δ1 + (1−

λi

λ∗
)δ2

)

‖z‖2 = −γ2‖z‖
2

This shows that̂A is negative definite for a suitably chosenK.

1C.Q. Ma and J.F. Zhang, “Necessary and Sufficient Conditionsfor Consensusability of Linear

Multi-Agent Systems",IEEE Trans. on Automatic Control, Vol. 55, 2010, pp. 1263-1268.
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Controller Design

The controllerK is designed so that

Â = [(IN−1 ⊗ A)− (L22 − 1N−1L12)⊗BKC)] is stable, which in turn is

equivalent to findingK so thatA− λ∗BKC is stable. For this purpose, one can use

any of the known methods of feedback design of time invariantsystems.

The state error converges only to the limitlimt→∞ E‖x̂(t)‖2 → q

γ2

, where

q =
1

2
Trace(B̂Q̂B̂

T ) =
1

2
Trace(H ⊗BKQK

T
B

T )

x̂
T
Âx̂ ≤ −γ2(K)‖x̂‖2,

Note the gain matrixK in both the numerator and the denominator of the consensus

error limit. This means that a larger value ofK does not necessarily mean a smaller

consensus error.

A larger value ofK implies largerγ2, i.e., faster convergence, but at the same time a

larger consensus error due to largerq

There is a trade-off between rate of convergence and consensus error.
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Remarks

Requires the controllability and observability of the system{A,B,C} to guarantee the

existence of the gain matrixK.

The system matrixA is assumed negative semidefinite. This is also necessary from a

practical point of view since each subsystem is expected to operate as a standalone

system or in the network in cooperation of other subsystems.

In case the system evolves in a noise free environment, i.e.,q = 0, the state error

between any pair of subsystem to zero.

In case the connection strength is same for any pair of subsystems, one can prove that

the mean square state error between any pair of subsystems also converges to a small

bound.
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Controller Resilience

The network connectivity matrixL22 is an integral component of this matrix.

Since the network connectivity can change because of a failure, the question is whetherK

would maintain stability.

Our proof only requires the upper bound of the eigenvalues ofL22 − 1N−1L12. This leads

to the invariance of the controller under different fault conditions. This is shown next.
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Link Failure

Graph Laplacian for the network is given by:

L =





















∑

j a1j −a12 −a13 · · · −a1N

−a21
∑

j a2j −a23 · · · −a2N

...
...

...
. . .

...

−aN1 −aN2 −aN3 · · ·
∑

j aNj





















If the communication link between nodesm andn fails, we setamn = anm = 0.

Thusdn =
∑

j
anj will be smaller than their corresponding pre-fault values,

however all eigenvalues ofL of faulted system remain bounded by the same pre-faultλ∗.

0 = λ
f
1
< λ

f
2
≤ λ

f
3
≤ · · · ≤ λ

f
N ≤ 2max

i
{af

ij} ≤ λ
∗ = 2max

i

∑

j

aij

zT (A− λ
f
i BKC)z ≤ −

(

λi

λ∗
δ1 + (1−

λ
f
i

λ∗
)δ2

)

‖z‖2 < 0 for all i = 2, 3, · · · , N

Thus the pre-fault controller remains a valid controller for the post-fault system.
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Node Failure

Suppose the subsystemk fails. Then we setaik = aki = 0 for all i.

Lf
N =

























df
1

−a12 −a13 · · · 0 · · · −a1N

−a21 df
2

−a23 · · · 0 · · · −a2N

· · · · · · ·

0 0 0 0 · · · 0 0

· · · · · · ·

−aN1 −aN2 −aN3 · · · 0 · · · df
N

























The degreedf
i of nodei of the failed system will be bounded by that of the pre-fault system

df
i =

∑

j 6=k

aij ≤
∑

j

aij = do
i

and {λf
1 = 0, λf

2 = 0 < λf
3 ≤ λf

4 ≤ · · · ≤ λf
N} ≤ λ∗

Note that there are now two zeros in the set of eigenvalues.

The pre-fault controller maintains stability of the post-fault system.
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Example





ẋi

v̇i



 =





0 1

−1 0









xi

vi



+





0

1



ui

yi =
[

0 1
]





xi

vi





ui = K

N
∑

j=1

aij(sij − yi)

sij = yj + ηij

whereηij is a Gaussian white noise with mean zero and covarianceσ2 = 0.1.
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Network Topology
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−0.5 1.5 −0.6 −0.4

−0.7 −0.6 2.1 −0.8

0 −0.4 −0.8 1.2















which has the eigenvaluesλ = {0, 1.1906, 1.9821, 2.8273}, andλ∗ = 4.2.

For the gain, we chooseK = 0.5.
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Example – Consensus
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Example – Consensus
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Link Failure
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Example – Link Failure

0 50 100 150
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Link (2,3) failed att = 50 and recovered att = 100. A link failure has two

contradicting effects: 1) Less noise enters the system – a stabilizing effect, and 2)

Loss of sensor signal for control – a destabilizing effect. The net result is a loss of

system performance in the sense of a larger consensus error.
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Node Failure
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Ensemble average of system statexi andvi with Node 4 failed

Here node failure is assumed to be failure of its control system and loss of all

sensor signal for other subsystems.
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Node Failure
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Node Failure
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Node 4 failed att = 50 and recovered att = 100. Since the system without a

controller is oscillatory, it remained in that state leading to a large consensus error.

Normal performance was resumed after the controller was added.
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Conclusions

Multiagent concept has been used for consensus control of linear systems.

The overall system consists of an interconnection of many identical subsystems.

Connectivity between subsystems is undirected with nonuniform interconnection weights.

The overall system evolves in a noisy environment with channel noise.

Collective consensus is achieved in the weak mean square sense, i.e., subsystems collectively track

the leader state only within a small bound. This is expected since the system is noisy.

The controller is resilient to communication or subsystem failures in the sense that it maintains

collective stability of the interconnected system.
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Thank you!
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