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Introduction 

IQ: Information Quality (includes both Data Quality and Data Relevance) 

AQ: Assessment Quality (includes confidence on assessment) 

 Complex engineering systems need to be reliably monitored to ensure safety and proper operations. 

 Architecture: 

 Monitoring challenges include efficient processing of information and correct assessment of 

    facility health (physical & cyber) despite possible natural or malicious disturbances. 

 Goal: Design and evaluate the performance of a monitoring system that degrades gracefully under 

               natural or malicious sensor malfunctioning. We refer to such a system as resilient. 



ReCAM Structure 

 ReCAM here aims at selecting sensors to make plant health 

     assessments within desired time periods, while previous work 

     focuses on selecting sensors to maximize assessment confidence. 



Monitored Plant and Sensors 

• Vi, i=1,2,…M, : random variables for process variables, taking discrete values (e.g., L, N, or H). 

• Plant model: A set of conditional probabilities: 

 Plant model 

 Sensor model / cyber attack model 
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• Bayesian Belief Network (BBN) is used to organize this information. 

• G : random variable for plant status, taking discrete values (e.g., Normal, Degrading, or Down). 
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• A given process variable, V, observed by (active) sensors S1, S2,… 

Calculate             : 

This portion is conducted for each (active) sensor Si associated with V 

•               calculation: If measurement s from Si is Normal (N): 

• Combined PMF* used as a target for a smoothing process to prevent abrupt changes in  

PMF*=target PMF 

Information Layer 

• Believability: (if three possible values for V) 
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• Combination rule based on Demspter-Shafer theory (2 sensors): 

can be extended to more than two sensors 
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 Updated distribution of G,           is then the marginal probability Q(G) 

 Let              be the set of all joint probability distributions of G and V such that the marginal 

probability of V is          .  

 Consider one process variable with           at time k. 

Assessment Layer 

 Jeffrey’s rule: 

 

0

)(

)(ˆ
),(

),(








 VP

VP
VGP

VGQ
if P(V) ≠ 0 

otherwise 

Assessment 

algorithm at time k 

 Q(G,V) obtained by Jeffrey’s rule above is the I-projection of P(G,V) onto             , i.e., the 

distance from P(G,V) to Q(G,V) is minimum (w.r.t. Kullbeck-Leibler measure or relative entropy) 

among all distributions in            . 
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 IPFP Idea: Apply Jeffrey’s rule repeatedly: Project P(G,V1,V2) onto,             and then project the 

result onto              , and then project the result onto              , and so on until convergence. 
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 Question: What if           and             are estimated at time k? )(ˆ
1VP )(ˆ
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 Solution:   Project P(G,V1,V2)  onto              ∩             . ))(ˆ( 2VPS))(ˆ( 1VPS

 Implemented for BBN model using virtual nodes. 

From plant model and prior belief of G 



Assessment Entropy & Decisions 

• Once the assessment entropy of plant decreases below a (user-defined) decision threshold, a definite decision is made  

  about the plant state (e.g., whether the plant is normal, degrading, or down) and the belief of plant state is reset to  

  complete ignorance (e.g., P(G)=[1/3 1/3 1/3]) for  the subsequent assessment, and the assessment procedure repeats. 

• Assessment algorithm is applied as                                           are being calculated times k=1,2,… 

• When                                         at time k are consistent with            calculated at time k-1, the assessment  

  entropy of plant decreases from its previous value calculated at k-1. 

• If current time is k, prior belief for the assessment algorithm is           calculated at time k-1. 
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Entropy HA 

Decision threshold 

Measurement index k 
Make “definite” decision and “reset” BBN 

(reset BBN assessments to max entropy) 

… … 

Building evidence 

Decision period 



 Projected decision period (       ): calculated based on time elapsed (TE) from last decision on plant state, 

assessment entropy decrease rate (rH), and decision threshold. 

Sensor Selection Layer 

• Goal: Select sensor configurations to meet (user-defined) decision period. 

  

 Ring element 

Desired decision period Tolerance interval 

Projected decision period 

Basic Idea: 

o If projected decision period         longer  

   than desired, penalize inactive sensors; 

o If            shorter than desired,        

   penalize active sensors. 

o Sensors with high DQ incur less penalty  

   when active and more when inactive; 

o Sensors with low DQ incur more penalty  

    when active and less when inactive. 

 Ring elements are penalized so that decision period is achieved within some tolerance. 

• Each sensor is equipped with a rational controller formulated as a ring element. 

 An example penalty function: 
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Simplified Power Plant Model 

• Consider a power plant consisting of 6 unit operations and 16 process variables 



BBN for Boiler-Turbine Power Plant 
Power_Plant

Normal
Degrading
Down

2.55
43.2
54.3

Boiler

Normal
Degrading
Down

25.2
49.5
25.2

Turbine

Normal
Degrading
Down

25.2
49.5
25.2

Reheat_Steam_Gen

Normal
Mal

50.0
50.0

High_Press_Turbine

Normal
Mal

50.0
50.0

Low_Press_Turbine

Normal
Mal

50.0
50.0

Ph

Low
Baseline
High

42.9
42.9
14.3

Pr

Low
Baseline
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12.8

Tr

Low
Baseline
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23.0
14.0

Tl

Low
Baseline
High

33.5
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Low
Baseline
High

53.2
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17.8

Pl
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Baseline
High

54.5
29.0
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Mal
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49.0
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2.00
49.0
49.0
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Low
Baseline
High

2.00
49.0
49.0

16 Process variables 

6 Unit Operations 



Anomalies / Cyber Attacks Considered 
• 4 types of plant anomalies: 

 Anomaly #1, in MSG: Low Heat Transfer (TM < 600 oC, SM < 4.56e-3 ) 

 Anomaly #2, in RSG:  Pipeline rupture (PR < 1 MPa, TR < 600 oC, HR > 4.6%) 

 Anomaly #3, in HPT:  Improper Heat Insulation ( TH < 197 oC, Ta > 63.25 oC ) 

 Anomaly #4, in LPT:  Decreased Efficiency ( TL > 46 oC, AL > 1.15 ) 

 Sensors assumed to have additive Gaussian white noise with zero mean and accordingly computed variance. 

• Two sets of redundant sensors, A & B, each set associated with given process variables 

• Plant anomaly: 

 Power plant operating normal from 0 to 749 seconds; 

 From 750 to 4000 seconds, reheat steam generator (RSG) is malfunctioning (pipeline rupture, Anomaly #2); 

• Sensor attacks (i.e., sensor readings are added / subtracted a bias): 

 All sensors are normal from 0 to 1499 seconds; 

 Attack #1: From 1500 to 2499 seconds, 12 sensors attacked: 

 In set A, (3) sensors measuring pressure (PR) and temperature (TR) in RSG and humidity (HR) in air around RSG 

are attacked (DQ = 0.3); 

 Three additional sensors in set A are randomly chosen to be attacked (DQ = 0.3); 

 Six sensors from set B are randomly chosen to be attacked (DQ = 0.3). 

 Attack #2: From 2500 to 4000 seconds, 12 sensors attacked: 

 Previously attacked sensors are restored; 

 Similar procedure is followed to choose the sensors to be attacked. 
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Resilient vs Non-resilient: MSG and RSG 

Anomaly Attack #2 

Probability of RSG Malfunction 

Probability of MSG Malfunction 

Attack #1 Anomaly Attack #2 Attack #1 

Probability of MSG Malfunction 

Probability of RSG Malfunction 

0% 0% 
0% 

0% 

Percentage of time probability greater 

than 0.8 when decision is made 

0% 

0% 

0% 

93.42% 
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Resilient vs Non-resilient 

where pi and       are, the true and estimated probabilities that unit operation i is malfunctioning. 

 Measure of resiliency:                      with 

“Significant confusion in making a conclusive assessment 

under non-resilient monitoring case” 

R:    Resilient system NR: Non-resilient system 

pi=0 for i  RSG;    
pRSG=0 for time < 2100;  
pRSG=1 otherwise. 



Conclusions 

• A resilient condition assessment monitoring (ReCAM) system is developed. 

• Future work includes extending ReCAM to monitoring and protection of power grids 

  and to control, resulting in a resilient monitoring, adaptation and control (ReMAC) system. 

• Developed system is applied to a simplified power plant model and resiliency of 

  the system is demonstrated. 

• Results show that improved monitoring performance and resiliency can be achieved. 



Smoothing Process 

 ¢t and ¿ are design parameters. 

 For time instant k, dynamics are simulated with input PMF*(k) from tk-1 to tk =tk-1+ ¢t, where t0=0. 

• Dynamics for smoothing process is given by: 

• At each time instant k, PMF*(k) is calculated and the smoothing process is simulated.  

 At time t=0, PMF(0) is uniformly distributed. For example,                                        when                             .  

 PMF(tk) is            for time k. 

Dynamics PMF*(k) 

Smoothing process 

Backup Slide 


