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Introduction

U Complex engineering systems need to be reliably monitored to ensure safety and proper operations.
U Monitoring challenges include efficient processing of information and correct assessment of
facility health (physical & cyber) despite possible natural or malicious disturbances.

0 Goal: Design and evaluate the performance of a monitoring system that degrades gracefully under
natural or malicious sensor malfunctioning. We refer to such a system as resilient.
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ReCAM Structure
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0 ReCAM here aims at selecting sensors to make plant health
assessments within desired time periods, while previous work
focuses on selecting sensors to maximize assessment confidence.



Monitored Plant and Sensors

U Plant model
*V, i=1,2,...M, : random variables for process variables, taking discrete values (e.g., L, N, or H).

* G : random variable for plant status, taking discrete values (e.g., Normal, Degrading, or Down).

* Plant model: A set of conditional probabilities:

(P(VI|G)]  for ieIC{1,2,..., M)}
d[P(V; |V;,G)] forsome pairs 4, j ¢ {1,2,..., M}

[P(V;|V;)]  forsomepairs 4,5 € {1,2,..., M}

—

* Bayesian Belief Network (BBN) is used to organize this information.

U Sensor model / cyber attack model

Assumed cyber attack DQ DO
threat level (TL;(t)) model i
Vv | Generate Gaussian noise
cont .
] NG Vo), o) 14,
i Measured ) . (Discrete) sensor
retrieved from REA S TIaa Discretization e
Power Plant model
. |
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Information Layer

* A given process variable, V, observed by (active) sensors S,, S,,...

o€¥ ={L,N,H} : Combine
Calculate Calculate PMF; : | ppspx | PME] PME" :
. - ‘ ' i Smoothin _
DQ —f believability | ,| P{v=0cls=0}=8B *—1, DbasedonD-S " brocess Y P(V)
for (active) B 1-B o 1 theory if more p
sensor S; PV #ols =0} =" papr - | | thanoneactive
J : > sensor PMF"=target PMF
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.................... stiromsensor(s) .

1
This portion is conducted for each (active) sensor S; associated with V

* Believability:

B=é[(l2|—1)DQ+l] (if three possible values for V) B %DQ N

Lo =

* PM F;* calculation: If measurement s from S; is Normal (N):

1-B 1-B
PMF; =[P, Py PH]=[T B 5

]

« Combination rule based on Demspter-Shafer theory (2 sensors):
PME " = PMFi*(?)PMFj*(*o-)
> PMF(8)PMF; (5)

oeX

o €X <«———can be extended to more than two sensors

« Combined PMF" used as a target for a smoothing process to prevent abrupt changes in 2(V)

— PMF*(k) —— Dynamics ——— B(V)
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Assessment Layer

P(V;),i =_1,2,...,M —> Assessment | — P(3)
at time k algorithm

@ Consider one process variable with (V) at time k. From plant model and prior belief of G

Q Jeffrey’s rule:

PV)  ifPv)£0
QG,V) =17V 5

0 otherwise
U Updated distribution of G, P(G)is then the marginal probability Q(G)

O Let S(P(V)) be the set of all joint probability distributions of G and V such that the marginal
probability of Vis P(V).

U Q(G,V) obtained by Jeffrey’s rule above is the I-projection of P(G,V) onto s(P)), i.e., the

distance from P(G,V) to Q(G,V) is minimum (w.r.t. Kullbeck-Leibler measure or relative entropy)
among all distributions in S(P(V)).

O Question: What if P(v,) and P(v,) are estimated at time k?
Q Solution: Project P(G,V,,V,) onto S(P(V,)) NS(PV,)).
O IPFP Idea: Apply Jeffrey’s rule repeatedly: Project P(G,V,,V,) onto, S(P(V,)) and then project the
result onto S(P(v,)) , and then project the result onto S(P(V,)) , and so on until convergence.
~ _ » Implemented for BBN model using virtual nodes.
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Assessment Entropy & Decisions

« Assessment algorithm is appliedas P(V;),i = 1,2,..., M are being calculated times k=1,2,...

« If current time is k, prior belief for the assessment algorithm is P(G) calculated at time k-1.

*«When P(V)),i=1,2,..., M at time k are consistent with P(G) calculated at time k-1, the assessment
entropy of plant decreases from its previous value calculated at k-1.

Assessment ‘
Entropy HA

. =Building evidence
-
4

bbbl Decision threshold
A Decision period
[«

|
Make “definite” decision and “reset” BBN

(reset BBN assessments to max entropy)

|

> k Measurement index

* Once the assessment entropy of plant decreases below a (user-defined) decision threshold, a definite decision is made
about the plant state (e.g., whether the plant is normal, degrading, or down) and the belief of plant state is reset to
complete ignorance (e.g., P(G)=[1/3 1/3 1/3]) for the subsequent assessment, and the assessment procedure repeats.

—. HY= % —P(G=o0)logjs P(G=0)
. o2




Sensor Selection Layer Ring element

*» Goal: Select sensor configurations to meet (user-defined) decision period. active 1,0 inactive
* Each sensor is equipped with a rational controller formulated as a ring element. T~ &
#= e ({zh) 078 0.25
0 Ring elements are penalized so that decision period is achieved within some tolerance.
0 An example penalty function: Penalty for inactive sensors 05
Penalty for active sensors | Basic lIdea:
penaly®t  ~ —— Higher DO o If projected decision period D P longer
71 : | o than desired, penalize inactive sensors;
"""""""" I — " — —— " LowerDQ o If DP shorter than desired,
| | penalize active sensors.
--------------- I b — . — . — - LowerDQ o Sensors with high DQ incur less penalty
31 ' ' Hi when active and more when inactive;
e m— = mmemsss——————ee |gher DQ
Lyl o Sensors with low DQ incur more penalty
T So Projected decision period when active and less when inactive.

. .. . ~
Desired decision period ~ Tolerance interval

0 Projected decision period (D P): calculated based on time elapsed (Tg) from last decision on plant state,
assessment entropy decrease rate (rH), and decision threshold.

A
Assessment entropy

E\I'L( rH
"'. A \__________Decision threshold
i

T




Simplified Power Plant Model

« Consider a power plant consisting of 6 unit operations and 16 process variables

Both turbines isentropic We=W,p + Wie
15 MPa, 600°C 10 Tz 0 C = 1925 Kd/kg
7/
' 21 Rl |

B P "
A TRA 10 kPa, sat. iqud HP: High Pressure
Wpump 46°C LP: Low pressure
O: Temperature sensor  /\: Pressure sensor []: Power output sensor

<>: Humidity sensor [\: Strain sensor . 1: Accelerometer sensor




BBN for Boiler-Turbine Power Plant
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Anomalies / Cyber Attacks Considered

* 4 types of plant anomalies:

O Anomaly #1, in MSG: Low Heat Transfer (T,, < 600 °C, S, < 4.56e-3)

O Anomaly #2, in RSG: Pipeline rupture (Pg <1 MPa, T, < 600 °C, Hy > 4.6%)

O Anomaly #3, in HPT: Improper Heat Insulation ( T, < 197 °C, T, > 63.25°C)

O Anomaly #4, in LPT: Decreased Efficiency (T, > 46 °C, A, >1.15)
 Two sets of redundant sensors, A & B, each set associated with given process variables

0 Sensors assumed to have additive Gaussian white noise with zero mean and accordingly computed variance.
* Plant anomaly:

O Power plant operating normal from 0 to 749 seconds;
O From 750 to 4000 seconds, reheat steam generator (RSG) is malfunctioning (pipeline rupture, Anomaly #2);

* Sensor attacks (i.e., sensor readings are added / subtracted a bias):
Q All sensors are normal from 0 to 1499 seconds;
Q Attack #1: From 1500 to 2499 seconds, 12 sensors attacked:
> Inset A, (3) sensors measuring pressure (Pg) and temperature (Tg) in RSG and humidity (Hg) in air around RSG
are attacked (DQ = 0.3);
» Three additional sensors in set A are randomly chosen to be attacked (DQ = 0.3);
» Six sensors from set B are randomly chosen to be attacked (DQ = 0.3).
Q Attack #2: From 2500 to 4000 seconds, 12 sensors attacked:
» Previously attacked sensors are restored;
~ > Similar procedure is followed to choose the sensors to be attacked.
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Half Sensors Are Attacked (DQ=0.1)
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Probability of MSG Malfunction
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Resilient vs Non-resilient

Resiliency comparison

#of Period 1 Period 2 Period 3 Periodd | || Sy stem wio resilient monitaring alg.

Devices (Normal) (anomaly #2) (attack £1) (attack #2) e Sy stem wi resilient moritoring alg
R NR R NR R NR R NR % ter
% 1.4}
0 100% 100% 0% 0.13% 0% 0% 0% 0.26% 5 1ol
1| 0% 0% 100% | 99.87% | 100% | 82.58% | 100% | 0.26% g,
=
2 0% 0% 0% 0% 0% 17.42% | 0% 22.11% £ 08f
2 06
30 | 0% 0% 0% 0% 0% 0% 0% 77.37% 5l
O
0.2k g
“Significant confusion in making a conclusive assessment T T M7 TR YT T ST TR o
under non-resilient monitoring case” Time
R: Resilient system NR: Non-resilient system Poclatak  CpberAtuck#l  Cyber Atk #2
0 Measure of resiliency: |7 — T'||, with Up,=0 for i #RSG;
Prsg=0 for time < 2100;
T = [pmsa PRSG PHPT PLPT PFW P PCondenser] Drec=1 Otherwise.

T = [PrsG PRSG PHPT PLPT DFWP PCondenser)

where p; and p; are, the true and estimated probabilities that unit operation i is malfunctioning.
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Conclusions

* A resilient condition assessment monitoring (ReCAM) system is developed.

 Developed system is applied to a simplified power plant model and resiliency of
the system is demonstrated.

* Results show that improved monitoring performance and resiliency can be achieved.

» Future work includes extending ReCAM to monitoring and protection of power grids
and to control, resulting in a resilient monitoring, adaptation and control (ReMAC) system.

—e
g
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Backup Slide Smoothing Process

PMF*(k) ——{ Dynamics ——— P(V)

L Smoothing process

« At each time instant k, PMF*(K) is calculated and the smoothing process is simulated.

» Dynamics for smoothing process is given by: T%PMF(t) = PMF*(k) — PMF(t)
Q At time t=0, PMF(0) is uniformly distributed. For example, PV F(0) = [% % %] when >~ = {L,N,H}.

O For time instant k, dynamics are simulated with input PMF*(k) from t, , to t, =t, ;+ At, where t,=0.

O At and 7 are design parameters.
0 PMF(t) is P(V) for time k.




