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Motivation 
• Need for robust, reliable, and resilient controller 

• Resilient controller defined as one which maintains state awareness as 
well as operational normalcy in response to malicious attacks 

• Robust in terms of compatibility with a wide variety of plant models and 
able maintain control despite noise and model uncertainty 

• We define a malicious attack as one which does one of the following: 
• False Data Injection 

• The attacker modifies the input data to the plant or injects false data 
• Sensor Data Alteration 

• The attacker modifies the output data from the plant 
• Plant Parameter Changes 

• Plant parameters are modified or the entire model of the plant is changed 
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Objective 
• To develop a Resilient Model Reference Adaptive Neural Controller 

 
• Model Reference Control Architecture controls the closed-loop 

output of the plant to match the output of an ideal reference system 
• Here the ideal reference system is independent of the plant 

 
• Neural networks are used to identify the unknown plant and thus 

little modeling is needed 
 

 
 

Figure: Model Reference Neural Control Architecture 



Adaptive Neural Control 
System 

• Hierarchical and modular design gives the system a high level of 
fault tolerance 

• Two separate neural networks are used 
• One replicates the unknown plant 
• The other controls the plant to behave as the ideal reference 

system 
• Two defining characteristics of this neural architecture 

• Time-varying adaptive speed rate 
• Constrained interconnections between neurons impart a 

temporal ordering on neural network 



Hierarchy of ANC System 



Hierarchy: Neurons and 
Synaptic Connectors 
- 

• Neurons are bi-directional 
devices with a forward path 
and a backward path 

• Each neuron contains a neural 
function, which is either a 
linear or a sigmoid function 

• Neurons connected by 
synaptic connectors 

• Synaptic connectors are also 
bi-directional devices 

• Weight associated with 
synaptic connector and not 
with neuron 

• This allows the neurons to 
remain static while only the 
connections adapt 



Hierarchy: Ganglia and Toeplitz 
Synapses 

• Groups of neurons are defined as Ganglia 
• The position of the neurons determine 

the age of the data 
• Top level neurons represent current 

data 
• Lower level neurons represent past 

data 
• Since top level neurons do not feed 

signals into lower level neurons, past data 
points do not depend on future inputs 

• Groups of synaptic connectors 
constrained as above are called Toeplitz 
Synapses 

• These weights can be represented by an 
upper right diagonal weight matrix 



Hierarchy: Replicator Unit 

- 

• To replicate a system we inject a training signal into the unknown plant 
and into the neural network 

• The error between the plant’s output and the neural network’s output is 
then injected into the backward path of the neural network, driving the 
weight update laws 



Hierarchy: ANC System 

- 
• The ANC system uses four 

replicator units 
• Two units in the Closed-Loop 

Modeler 
• Two units in the Control 

Adaptor 
• The Closed-Loop Modeler 

replicated the unknown plant 
inside the closed-loop 

• The Control Adaptor drives the 
output from the plant to match 
that of an ideal reference 
system 



ANC Adaptive Update Law 

- • Weight update law contains a time-
varying update speed μ 
 

• This update speed depends on the 
global errors as well as the local forward 
and backward signals 
 

• β is a constant built into the system and 
depends on the location of the synapse 
(linear / nonlinear neuron and control 
adaptor / closed-loop modeler) 
 



Simulations 
• We simulated three types of attacks: False Data Injection, Sensor Data 

Alteration and Plant Parameter Changes  
• Because of the nature of the neural network we assume our plant model to 

be unknown 
• We assume the attack occurs after our plant has been running for 

sometime and therefore the plant’s output already matches that of the 
ideal reference system 

• For simulation purposes we use the follow nonlinear model for our plant: 

• We use the following model for our ideal reference system 



Simulations:  
False Data Injection 

• False data is modeled as a step input 
added to the original plant input 
signal 
 

• Attack occurs at t = 3 seconds 
 

• Plant’s output matches that of the 
ideal reference system approximately 
2 seconds after the attack 



Simulations: 
Sensor Data Alteration 

• Sensor Data Alteration is modeled as 
a step input added to the output of 
the plant 
 

• Attack occurs at t = 3 seconds 
 

• Plant’s output matches that of the 
ideal reference system approximately 
2 seconds after the attack 



Simulations: Plant Parameter 
Changes (Linear Case) 

• Attack plant model:  
• Attack occurs at t = 5 seconds 
• We see the initial plant replicated in less than 

0.1 seconds 
• Attacked plant replicated within 0.01 seconds 
• Attacked plant controlled within 1 second 

Figure: System Replication 

Figure: Control 

Figure: Attacked Plant Replication 



Simulations: Plant Parameter 
Changes (Nonlinear Case) 

• Here the attack changes the 
plant model from a nonlinear 
model to a completely different 
nonlinear model 
 
 
 

• Attack occurs at t = 5 seconds 
 

• Attacked plant is controlled 
approximately 12 seconds after 
attack  



Conclusions 
• Adaptive Neural Control system is able to identify an unknown nonlinear plant 

within seconds 
 

• Control of unknown plant usually occurs within 3-5 seconds 
 

• Maliciously attacked plant is identified within seconds 
 

• Maliciously attacked plant output matches that of reference system within 12 
seconds for worst case scenario 
 

• Setting learning rate constants too high can result in highly oscillatory behavior 
 

• Setting learning rate constants too low results in longer convergence times 
 

• We have found a broad range of values for the learning rate constants that give 
good settling times without much oscillations for a wide variety of plant models 



Questions? 
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