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Cyber-Security of Critical Infrastructures —

* Protection against cyber attacks and cyber terrorism

« Critical infrastructures (e.g. nuclear power plants, SCADA) are
vulnerable

» Development of System Protection Cyber Sensor
— Easy to deploy
— Low Cost
— Increased State-Awareness

* Previously adopted solution: PAT———
— Anomaly Detection R —
— Cons:
 Builds single comprehensive normal behavior model
— (unsuitable for overlapping communication streams)
» Uses sensitivity threshold
— (false positive — false negative tradeoff)
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Window Based Feature Extraction

* Previous work: Use sliding window to compute statistical properties of

a seqguence of packets:
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Online Learning Algorithm

* Online network behavior patterns extraction

— Apply Nearest Neighbor clustering algorithm to the incoming pre-processed
stream of packets

— Also accumulate statistical information about the patterns assigned to each cluster
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» Modified cluster update rule for the Nearest Neighbor clustering:
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« During the testing phase, individual clusters are used to
initialize fuzzy rules:

Fuzzy Rule Extraction

Rule R;: IF x;is 4F AND ... AND x, is 4" THEN yis B

« Gaussian fuzzy set:

mij :Cij
5 =a(c -¢)
5l =a(c! —¢)
»

o - Fuzzines parameter
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Fuzzy Rule Based Anomaly Detection

» Uses fuzzy inference with the extracted set of normal network behavior
rules:

° Fuzzy Rules:  Rule Ri: TF x,is 4F AND ... AND x, is 4* THEN y, is 8*

- Degree of Firing: He, (X) =min{u,, (X))}
« Aggregate rule outputs:
y(X) =max ug (X)

— Rules describe the similarity of the observed behavior and the normal
behavior. Hence, the output of each rule is its own firing strength
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Anomaly Detection — Case Study

* Anomaly Detection results on a single communication stream
— Detection performance with different sensitivity threshold values
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CLASSIFICATION PERFORMANCE WITH DIFFERENT SENSITIVITY THRESHOLDS

Threshold | Correct Rate | False Pos. False Neg.

0.3 99.9037% 0.1217% 0.0275%
0.6 09.5504% 0.1082% 1.3753%
0.9 09.3799% 0.1082% 2.0079%

— Adjusting sensitivity threshold leads to false negative — false positive
tradeoff
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Representing Domain Knowledge

* Modeling of domain knowledge using linguistic fuzzy rules
— Use Interval Type-2 Fuzzy Sets (IT2 FSs) " 4t ()
— Handle linguistic uncertainty l
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IT2 Fuzzy Rule:

0

Rule Ri: IF x;is 4F AND ... AND x,is 4" THEN y;is B*

* IT2 Fuzzy Logic System is used to compute the sensitivity threshold
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EX. : If number of protocols is high then sensitivity threshold is low
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Anomaly Detection System Architecture

» 1) Determine Cyber-Security Context
— Uses linguistic rules to compute the sensitivity threshold

 2) Isolate individual communication streams
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— €.0. IP-based Network Traffic
|
- 3) Calculate the anomalous level N
s Fu
: PR Sensitivity IT2FLS ~ 2zy
In each communication stream | Threshold | Security Context < RL{GgE;c
ule Base

* 4) Use the computed sensitivity

threshold to classify the input
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Assumption: Representative normal behavior was used for training  1g/15




Experimental Test-bed

« Small campus grid (SCG) and sensor network
— Center for Advanced Energy Studies (CASE), Idaho Falls, ID

— Smart Grid test platform
— Heterogeneous mixture of devices

» Wireless sensors, wind and Monitoring
solar power resources, WAP

— Wireless AMI s
 WAP gateways

— Control systems:
* Rockwell automation PLC
» National Instruments PLC
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Experimental Data Sets

* Normal Training Data
— 100,000 packets during normal operation
— Only used during training

« Testing Data
— 200,000 packets with simulated abnormal behavior
* Nmap, Nessus (Network scanning and auditing)
* ARP pings, SYN stealth scans, port scanning, open port
identification, ...

 Linguistic Domain Knowledge:

CYBER-SECURITY LINGUISTIC DOMAIN KNOWLEDGE

Ri: If Time of Window is Low then Sensitivity Threshold is Low
Ra: If Time of Window is Medium then Sensitivity Threshold is Low
Ri: If Time of Window is High then Sensitivity Threshold is High

Ru: If Number of Protocols is Low then Sensitivity Threshold is High
Rs:  If Number of Protocols is Medium then Sensitivity Threshold is High

Re: If Number of Protocols is High then Sensitivity Threshold is Low 12/15




Experimental Results

* Applied to 3 communication

streams |
— Sensitivity threshold is oo
automatically adjusted 04
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CLASSIFICATION PERFORMANCE FOR STREAM 1

Experimental Results

» Provides improved tradeoff between
false negatives and false positives Threshold | Comrect Rate | FalsePos. | False Neg.
— False negative on stream 2 is low 03 o08539% | 01461% L 0000%%
— False positives on stream 1, 2, 3 0.6 99.8705% | 0.1295% | 0.0000%
are kept low as well 0.9 99.8788% | 0.1212% 0.0000%
IT2FLS 99 8722% 0.1278% 0.0000%

CLASSIFICATION PERFORMANCE FOR. STREAM 2

CLASSIFICATION PERFORMANCE FOR STREAM 3

Threshold | Correct Rate | False Pos. False Neg. Threshold | Correct Rate | False Pos. False Neg.
03 99 9037% 0.1217% 0.0275% 0.3 99 8643% 0.2953% 0.0000%
0.6 99 5504% 0.1082% 1.3753% 0.6 99.8960% 0.2265% 0.0000%
0.9 99 3799% 0.1082% 2.0079% 0.9 99 8960% 0.2265% 0.0000%

IT2 FLS 99.9111% 0.1116% 0.0275% IT2FLS 99.8960% 0.2265% 0.0000%
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Conclusion

* Presented novel complex anomaly detection architecture for critical
control systems

— Utilized previously designed anomaly detection system

— Applied anomaly detection algorithms to individual communication
streams

— Used IT2 Fuzzy Logic Systems to model linguistic domain
knowledge

» Tested on smart-grid experimental test bed
— Demonstrated learning of normal behavior on individual streams

— Available domain knowledge can lead to performance
Improvements

« Balancing the false negative / positive tradeoff
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