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Problem motivation

This research started as part of INL’s resilient control system research program
The first step in any control or prognostication system development is the creation of a system model

There exist three basic types of models:

White Box ↔ Gray Box ↔ Black Box

Each model must use system data to fully quantify actual system coefficients

Though most models are non-linear, we still tend to use linear tools such as least squares to find actual system coefficients

To complicate this further, a large number of systems of interest tend to be unstable

Instability makes collecting data very difficult – often we attempt a simple stabilization controller in order to collect data – how does this
effect our ID process?

Moreover, what kind of data does one need to determine a nonlinear model?
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An example nonlinear system:

Consider performing SysID on a nonlinear constant
coefficient homoclinic bifurcation system:

ẋ(t) = y(t)
ẏ(t) = µy(t)+ x(t)+ x2(t)+ x(t)y(t)

top right phase portrait is for µ =−0.8
lower right phase portrait is for µ =−0.95

the system changes from the top unstable system
with two fixed points to a trapped stable region
around one of the fixed points near µ =−0.87

both systems are generally unstable
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What trajectories are needed to re-discover a system’s
dynamics?

Trajectories in the upper left look a lot like a
standard saddle manifold, does that matter?

How many sample trajectories do we need?

How long does each trajectory need to be?

Do we need to sample around the fixed
points?

Do we need to sample in each quadrant?

What happens when noise enters the
picture?

Do we need to know the exact equation?

Can we stabilize the system so we can take
more data – longer data?

These questions and more are summed up as:

Persistent Excitation
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In low noise conditions – say 100 db SNR:

Need only a single trajectory

Any nonsingular trajectory will do

Enough sample points to fully constrain the
free coefficients

This result is due to the uniqueness theorem
of differential calculus

The solution is a pseudo inverse:

C =

[((
AT A

)−1
AT ẋ(t)

)T ((
AT A

)−1
AT ẏ(t)

)T
]

where A =
[
y x x2 xy

]
As noise grows this changes...

More data is required to overcome the
added noise effects

C ẋ(t) coefficients ẏ(t) coefficients
SNR (dB) y x x2 xy y x x2 xy

100.0 +1.000 -0.000 -0.000 +0.000 -0.950 +1.000 -1.000 +1.000
60.0 +1.000 -0.000 -0.000 +0.000 -0.953 +1.002 -0.999 +0.999
55.0 +0.999 +0.001 +0.000 -0.000 -0.947 +0.999 -1.000 +1.001
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Stabilizing the system:

One can make our example system fully controllable
and observable by adding a control to the ẋ(t):

ẋ(t) = y(t)+u(t)
ẏ(t) = µy(t)+ x(t)+ x2(t)+ x(t)y(t)

where u(t) is the control. If one chooses the
controller to be u(t) = 1.2(0− y(t)), the system
can be stabilized to (0,0) for either system:

ẋ(t) = −0.2y(t)
ẏ(t) = µy(t)+ x(t)+ x2(t)+ x(t)y(t)

the phase portraits transforms to:

top right phase portrait is for µ =−0.8
lower right phase portrait is for µ =−0.95
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What are the effects of stabilizing the system?

Our basic linear modeling concept is – given
a small enough region about a point – we can
always approximate a nonlinear system with
a local linear system

The purpose of a regulator is to stabilize a
system to a point

Such a stabilization therefore drives the
nonlinear effects out of our system data

In fact don’t the two systems to the right look
even more similar now?

Since our controller in essence drives the
nonlinear effects out of the very system we
are interested in learning about – why then
control it?

It is unstable and we need more data –

How then has this helped us?

How can we modify our approach and
achieve our goals?
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Weighted least squares:

Since control forces linearity out – weighted
data based on its mismatch to a linear model:

ẋ(t) =−.2y(t)
ẏ(t) =−.95y(t)+ x(t)
How shall we weight?

Define W [i] the weight for the i th sample point, w[i]:
W [i] = ||w[i]− ŵ[i]|| W = ||w− ŵ ||∀i

W = maxi W [i]

Normalizing results in: W = W
W +1;W(i,j) ∈ [1,2]

Now apply a weighted pseudo inverse:
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Nonlinear System Vector Field
Forward Time Nonlinear Traj.
Reverse Time Linear Traj.

C =

[((
AT W T WA

)−1
AT W T Wẋ(t)

)T ((
AT W T WA

)−1
AT W T Wẏ(t)

)T
]

where A =
[
y x x2 xy

]
ẋ(t) coefficients ẏ(t) coefficients

SNR (dB) y x x2 xy y x x2 xy

100.0 -0.200 -0.000 -0.000 +0.000 -0.950 +1.000 -1.000 +1.000
85.0 -0.200 -0.000 -0.000 -0.000 -0.951 +1.001 -1.000 +1.000
70.0 -0.200 -0.000 -0.000 +0.000 -0.942 +0.992 -1.002 +1.002
55.0 -0.201 +0.001 +0.000 -0.000 -0.939 +0.985 -1.003 +1.002
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Results of weighting the nonlinear trajectory points:

WLS improves coefficient recovery by 5 db over standard LS
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Conclusions and future directions

This paper focuses on the discovery of nonlinear dynamics while under linear control

One only needs the contributions of each mode to be larger than the noise

one can visit the region of phase-space dominated by that mode
weight the portions of the sampled dynamics that exhibit that model more heavily

Our weighting function is only a starting place:

one might consider weighting across all signals instead of each individual signal
one might weight based on relative signal size and its length
one might consider balancing the amount of data caused by constant sample times and
variations in dynamics evolution rates (e.g. trajectories close to fixed points evolve slower than
trajectories farther away)

Without some type of weighting scheme the amount of data contained within the slower evolving
portions of the phase-space can simply just smooth out the effects of other portions of the
phase-space
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