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Introduction 
• Significant portion of building energy usage is by HVAC systems 

– Over 50% 
• Building Energy Management Systems (BEMSs) are used to control 

these systems 
– Advanced and highly complex 

• BEMSs gather data from a large number of sensors throughout the 
building: 

– Temperature 
– CO2 
– Occupancy 
– AHU performance, etc. 

• Proper tuning of BEMSs allow significant savings 
• Highly complex therefore difficult to understand: 

– Low situational awareness 
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Anomaly Detection for Building Energy Management Systems 

• Problem: 
– How to improving the understandability of Building 

Energy Management Systems (BEMS)?  
• How to help building manager navigate in and understand the 

spatially complex building data 

• Solution: 
– Increase the state-awareness of building managers via 

anomaly detection techniques 
• Reducing the complexity of the presented information 
• Automatic identification of interesting patterns in building 

performance 
• Automatic generation of building performance summary 

reports 
• Easy to understand natural linguistic description of identified 

anomalies 
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Feature Extraction 
• BEMS provide large amount of complex data 
• Data Hierarchy 

– Building -> Floor -> Occupant’s Zone 
Zones Measurements 

Extracted Features *: 
1) Temperature 
2) Temperature Gradient 
 

* Note, adding more features is scope of future work. 
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Anomaly Detection 
• Learns model of normal occupant’s zone behavior 

– Applies Nearest Neighbor clustering to the time sequence of historical building data 
– Accumulate statistical information about the patterns assigned to each cluster 

 

• Cluster attributes: 
 
 

• Modified cluster update rule for the Nearest Neighbor clustering: 
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Fuzzy Rule Extraction 
• During the testing phase, individual clusters are used to 

initialize fuzzy rules: 
 
 

• Gaussian fuzzy set: 
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Fuzzy Rule Based Anomaly Detection 
• Uses fuzzy inference with the extracted set of normal occupant’s 

zone behavior rules: 
 
 
 

• Fuzzy Rules: 
 

• Degree of Firing: 
 

• Aggregate rule outputs: 
 

– Rules describe the similarity of the observed behavior and the normal 
behavior.  
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Linguistic Description of Anomalies 
• Identified anomalies can be described using easy to 

understand linguistic rules 
– Improves the understandability of the results by building managers 
– Linguistic labels are computed by fuzzifying the feature vector and 

then selecting linguistic terms with maximum membership grades 
 
 
 
 
 
 

– E.g. Temperature is Too Low and Temperature Change is Large 
Negative ( Confidence is Very High ). 

Note, the confidence value is taken as (1 – output) of the anomaly detection algorithm 
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Developed System Overview 
• Hierarchical view of the building 

– Building, floor and data view 

Different visualization modes 

Temperature 

Anomaly 
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Data Analysis 
• Sequential exploration of data 

– Every time sample – overwhelming task 
– Identified anomalies (rapid scanning of historical data) 

 

• Automatic summary report generation: 
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Anomaly Detection Tuning 
• Identified Anomalies 

– Based on significant difference from provided normal training data 
– Not necessarily anomalous building behavior 

• Operator’s background knowledge can be used to tune the 
performance of the anomaly detection algorithm 

– Identified anomalies can be added to the normal behavior model upon 
request 

– Selected feature vector is re-clustered and new FLS is generated 

Original After Update 
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Graphical User Interface 
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Future Work 
• Integrating additional sensor data to the anomaly detector 

– E.g. CO2 level, occupancy, user comfort 

• Codifying different types of anomalies. Implement methods 
for searching for specific anomalous behaviors. 

• Defining what kinds of actionable information can be 
provided to building managers 

• Designing and integrating predictive modeling tools  
–  E.g. some anomalies can be likely detected ahead of time. 

• Implementation for building managers 
– Tablet/phone (android) 
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