
Evaluating a ROP Defense
Mechanism

Vasilis Pappas, Michalis Polychronakis, and
Angelos D. Keromytis
Columbia University

Outline

• Background on ROP attacks
• ROP Smasher
• Evaluation strategy and results
• Discussion

8/14/2012 2

Machine Code-Level Attacks &
Defenses

8/14/2012 3

Code Injection

W⊗X

Code-reuse

ASLR

Information Leaks Break ASLR [Ser12]

8/14/2012 4

ASLR is Not Fully Adopted

• Executable programs in Ubuntu Linux

– Only 66 out of 1,298 binaries in /usr/bin [SAB11]

• Popular third-party Windows applications
– Only 2 out of 16 [Pop10]

8/14/2012 5

ROP Smasher

• Code randomization

• Applicable on third-party applications

• (Practically) Zero performance overhead

8/14/2012 6

Return-Oriented Programming

0xb8800000

0x00000001

0xb8800010

0x00000002

0xb8800020

0xb8800010

0x00400000

0xb8800030

Stack Code

0xb8800000:
 pop eax

 ret
...
0xb8800010:
 pop ebx
 ret
...
0xb8800020:
 add eax, ebx
 ret
...
0xb8800030:
 mov [ebx], eax
 ret

esp

Actions

eax = 1

ebx = 2

eax += ebx

ebx = 0x400000

*ebx = eax

8/14/2012 7

ROP Defenses
Pe

rf
or

m
an

ce
 O

ve
rh

ea
d

Lo

w

 H
ig

h

Program binary Source code

Requires

ROPdefender
[DSW11]

DROP
[CXS+09]

DROP++
[CXH+11]

8/14/2012 8

G-Free
[OBL+10]

Return-less
[LWJ+10]

CFL
[BJF11]

Why In-Place?

• Randomization usually changes the code size
– Need to update the control-flow graph (CFG)

• But, accurate static disassembly of stripped
binaries is hard
➔ Incomplete CFG (data vs. code)
➔ Code resize not an option

• Must randomize in-place!

8/14/2012 9

Randomizations

• Instruction Substitution

• Instruction Reordering
– Intra Basic Block
– Register Preservation Code

• Register Reassignment

8/14/2012 10

Instruction Substitution

8/14/2012 11

mov al,0x1
cmp al,bl

lea eax,[ebp-0x80]

add [edx],edi
ret

mov al,0x1
cmp bl,al

lea eax,[ebp-0x80]

add [eax],edi
fmul [ebp+0x68508045]

B
0

0
1

3
A

C
3

8
D

4
5

8
0

5
0

6
8

B
0

0
1

3
8

D
8

8
D

4
5

8
0

5
0

6
8

Instruction Reordering (Intra BBL)

8/14/2012 12

8B 41 10 mov eax,[ecx+0x10]

53 push ebx

8B 59 0C mov ebx,[ecx+0xC]

3B C3 cmp eax,ebx

89 41 08 mov [ecx+0x8],eax

7E 4E jle 0x5c

59 push ebx

0C 3B or al,0x3B

C3 ret

Instruction Reordering (Intra BBL)

8/14/2012 13

8B 41 10 mov eax,[ecx+0x10]

53 push ebx

8B 59 0C mov ebx,[ecx+0xC]

3B C3 cmp eax,ebx

89 41 08 mov [ecx+0x8],eax

7E 4E jle 0x5c

41 inc ecx

10 89 41 08 3B C3
 adc [ecx-0x3CC4F7BF],cl

Register Preservation Code Reordering

8/14/2012 14

push ebx
push esi
mov ebx,ecx
push edi
mov esi,edx
 .
 .
 .
pop edi
pop esi
pop ebx
ret

push edi
push ebx
push esi
mov ebx,ecx
mov esi,edx
 .
 .
 .
pop esi
pop ebx
pop edi
ret

Pr
ol

og

Ep
ilo

g

Register Reassignment

8/14/2012 15

eax edi
Live regions

function:
 push esi
 push edi
 mov edi,[ebp+0x8]
 mov eax,[edi+0x14]
 test eax,eax
 jz 0x4A80640B
 mov ebx,[ebp+0x10]
 push ebx
 lea ecx,[ebp-0x4]
 push ecx
 push edi
 call eax
 ...

function:
 push esi
 push edi
 mov eax,[ebp+0x8]
 mov edi,[edi+0x14]
 test edi,edi
 jz 0x4A80640B
 mov ebx,[ebp+0x10]
 push ebx
 lea ecx,[ebp-0x4]
 push ecx
 push eax
 call edi
 ...

Implementation – Orp

• Focused on Windows platform
– Could be integrated in Microsoft’s EMET

• CFG is extracted using IDA Pro
– Implicitly used registers
– Liveness analysis (intra and inter-function)
– Register categorization (arg., preserved, etc.)
– Randomizations
– Binary rewriting (relocations fixing, etc.)

8/14/2012 16

Evaluation Strategy

• How well will it stop future attacks?
– Function of attack surface, attack intent, and

attacker creativity
• Proxy characteristics

– How well it stops current attacks?
– How likely it is to “destroy” gadgets?

• Other considerations
– Performance, ease of use/deployment, impact on

functionality

8/14/2012 17

Evaluation

• Correctness and performance
– Execute Wine’s test suite using randomized

versions of Windows DLLs
– This is relatively easy

8/14/2012 18

Effectiveness

• What we did
– Randomization coverage: how many gadgets do

we break?
• Challenge: how do we even determine what is a

(useful) gadget?

– Real-world exploits
– ROP compilers

• What we did not do
– Create attacks, or invite others to do so

8/14/2012 19

Randomization Coverage

0
10
20
30
40
50
60
70
80
90

Instruction
Substitution

Intra Basic
Block

Reordering

Register
Preservation

Code
Reordering

Register
Reassignment

Total

M
od

ifi
ab

le
 G

ad
ge

ts
 (%

)

8/14/2012 20

Dataset: 5,235 PE files (~0.5GB code) from Windows, Firefox, iTunes and Reader

Real-World Exploits

8/14/2012 21

Exploit/Reusable Payload Unique Gadgets Modifiable Combinations

Adobe Reader v9.3.4 11 6 287

Integard Pro v2.2.0 16 10 322K

Mplayer Lite r33064 18 7 1.1M

msvcr71.dll (While Phosphorus) 14 9 3.3M

msvcr71.dll (Corelan) 16 8 1.7M

mscorie.dll (White Phosphorus) 10 4 25K

mfc71u.dll (Corelan) 11 6 170K

Modifiable gadgets were not always directly replaceable!

ROP Compilers

• Mona.py constructs DEP+ASLR bypassing code
– Allocate a WX buffer, copy shellcode and jump

• Q [SAB11] is the state-of-the-art ROP compiler

– Designed to be robust against small gadget sets

• Is it possible to create a randomization-

resistant payload?

8/14/2012 22

ROP Compilers Results

Non-ASLR Code Base Mona
Orig. Rand.

Q
Orig. Rand.

Adobe Reader v9.3.4 ✓ ✗ ✓ ✗

Integard Pro v2.2.0 ✗ ✗ ✓ ✗

Mplayer Lite r33064 ✓ ✗ ✓ ✗

msvcr71.dll ✗ ✗ ✓ ✗

mscorie.dll ✗ ✗ ✗ ✗

mfc71u.dll ✓ ✗ ✓ ✗

8/14/2012 23

Both failed to construct payloads from non-randomized code!

Discussion (-)

• No guarantee that we can destroy all gadgets
– No guarantee that we can destroy all instances of

those gadgets that an attacker needs for a specific
attack

– No guarantee that we can destroy all useful gadgets

• Probabilistic protection (attacker can get lucky)
• Perhaps we can use complementary techniques

for the remaining cases?
– Does not impact any other security techniques

8/14/2012 24

Discussion (+)

• Reasonable risk metrics are (perhaps) possible
– Fairly accurate estimate of number of gadgets

changed
– Relatively good estimate on average and

individual-gadget entropy
• Absent bugs in our code, no impact on

program correctness
• Static, low-overhead technique → good

enough?

8/14/2012 25

Summary

• In-place code randomization
– Requires no source code or debug symbols
– (Practically) Zero performance overhead
– Breaks 80% of gadgets
– Prevented real exploits and ROP compilers

• Even for a seemingly well-defined problem,
definitive evaluation is challenging

• Get the code (Python):
http://nsl.cs.columbia.edu/projects/orp

8/14/2012 26

http://nsl.cs.columbia.edu/projects/orp�

References

8/14/2012 27

[Ser12] Fermin J. Serna. The case of the perfect info leak, 2012.
 http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf.
[SAB11] Edward J. Schwartz et al. Q: exploit hardening made easy. USENIX Security, 2011.
[Pop10] Alin Rad Pop. Dep/aslr implementation progress in popular third-party windows applications, 2010.
 http: //secunia.com/gfx/pdf/DEP_ASLR_2010_paper.pdf.
[Sha07] Hovav Shacham. The geometry of innocent flesh on the bone: return-into-libc without function calls
 (on the x86). CCS, 2007.
[CDD+10] Stephen Checkoway et al. Return-oriented programming without returns. CCS, 2010
[BJFL11] Tyler Bletsch et al. Jump-oriented programming: a new class of code-reuse attack. ASIACCS, 2011.
[LZWG11b] Kangjie Lu et al. Packed, printable, and polymorphic return-oriented programming, RAID, 2011.
[DSW11] Lucas Davi et al. Ropdefender: a detection tool to defend against return-oriented programming
 attacks. ASIACCS, 2011
[CXS+09] Ping Chen et al. Drop: Detecting return-oriented programming malicious code, ICISS, 2009.
[CXH+11] Ping Chen et al. Efficient detection of the return-oriented programming malicious code,
 ICISS, 2011.
[OBL+10] Kaan Onarlioglu et al. G-free: defeating return-oriented programming through gadget-less
 binaries. ACSAC, 2010.
[LWJ+10] Jinku Li et al. Defeating return-oriented rootkits with “return-less” kernels. EuroSys, 2010.
[BJF11] Tyler Bletsch et al. Mitigating code-reuse attacks with control-flow locking. ACSAC, 2011.

	Evaluating a ROP Defense Mechanism
	Outline
	Machine Code-Level Attacks & Defenses
	Information Leaks Break ASLR [Ser12]
	ASLR is Not Fully Adopted
	ROP Smasher
	Return-Oriented Programming
	ROP Defenses
	Why In-Place?
	Randomizations
	Instruction Substitution
	Instruction Reordering (Intra BBL)
	Instruction Reordering (Intra BBL)
	Register Preservation Code Reordering
	Register Reassignment
	Implementation – Orp
	Evaluation Strategy
	Evaluation
	Effectiveness
	Randomization Coverage
	Real-World Exploits
	ROP Compilers
	ROP Compilers Results
	Discussion (-)
	Discussion (+)
	Summary
	References

