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• ROP Smasher 
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Machine Code-Level Attacks & 
Defenses 
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Code Injection 

W⊗X 

Code-reuse 

ASLR 



Information Leaks Break ASLR [Ser12] 
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ASLR is Not Fully Adopted 

 
• Executable programs in Ubuntu Linux 

– Only 66 out of 1,298 binaries in /usr/bin [SAB11]  
 

• Popular third-party Windows applications 
– Only 2 out of 16 [Pop10]  
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ROP Smasher 

 
• Code randomization 

 
• Applicable on third-party applications 

 
• (Practically) Zero performance overhead 
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Return-Oriented Programming 

0xb8800000 

0x00000001 

0xb8800010 

0x00000002 

0xb8800020 

0xb8800010 

0x00400000 

0xb8800030 

Stack Code 

0xb8800000: 
  pop eax 

  ret  
... 
0xb8800010: 
  pop ebx 
  ret 
... 
0xb8800020: 
  add eax, ebx 
  ret 
... 
0xb8800030: 
  mov [ebx], eax 
  ret 

esp 

Actions 

eax = 1 

ebx = 2 

eax += ebx 

ebx = 0x400000 

*ebx = eax 
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ROP Defenses 
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Program binary                                             Source code 
 

Requires 

ROPdefender 
[DSW11] 

DROP 
[CXS+09] 

DROP++ 
[CXH+11] 
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G-Free 
[OBL+10] 

Return-less 
[LWJ+10] 

CFL 
[BJF11] 



Why In-Place? 

• Randomization usually changes the code size 
– Need to update the control-flow graph (CFG) 

• But, accurate static disassembly of stripped 
binaries is hard 
➔ Incomplete CFG (data vs. code) 
➔ Code resize not an option 

 
• Must randomize in-place! 
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Randomizations 

• Instruction Substitution 
 

• Instruction Reordering 
– Intra Basic Block 
– Register Preservation Code 

 

• Register Reassignment 
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Instruction Substitution 
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mov al,0x1 
cmp al,bl 

lea eax,[ebp-0x80] 

add [edx],edi 
ret 

mov al,0x1 
cmp bl,al 

lea eax,[ebp-0x80] 

add [eax],edi 
fmul [ebp+0x68508045] 
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Instruction Reordering (Intra BBL) 
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8B 41 10 mov eax,[ecx+0x10] 

53       push ebx 

8B 59 0C mov ebx,[ecx+0xC] 

3B C3    cmp eax,ebx 

89 41 08 mov [ecx+0x8],eax 

7E 4E    jle 0x5c 

59       push ebx 

0C 3B    or al,0x3B 

C3       ret 



      

      

      

Instruction Reordering (Intra BBL) 
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8B 41 10 mov eax,[ecx+0x10] 

53       push ebx 

8B 59 0C mov ebx,[ecx+0xC] 

3B C3    cmp eax,ebx 

89 41 08 mov [ecx+0x8],eax 

7E 4E    jle 0x5c 

41       inc ecx 

10 89 41 08 3B C3 
 adc [ecx-0x3CC4F7BF],cl 



Register Preservation Code Reordering 
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push ebx 
push esi 
mov  ebx,ecx 
push edi 
mov  esi,edx 
   . 
   . 
   . 
pop  edi 
pop  esi 
pop  ebx 
ret 

push edi 
push ebx 
push esi 
mov  ebx,ecx 
mov  esi,edx 
   . 
   . 
   . 
pop  esi 
pop  ebx 
pop  edi 
ret 
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Register Reassignment 
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eax edi 
Live regions 

function: 
 push esi 
 push edi 
 mov  edi,[ebp+0x8] 
 mov  eax,[edi+0x14] 
 test eax,eax 
 jz   0x4A80640B 
 mov  ebx,[ebp+0x10] 
 push ebx 
 lea  ecx,[ebp-0x4] 
 push ecx 
 push edi 
 call eax 
 ... 

function: 
 push esi 
 push edi 
 mov  eax,[ebp+0x8] 
 mov  edi,[edi+0x14] 
 test edi,edi 
 jz   0x4A80640B 
 mov  ebx,[ebp+0x10] 
 push ebx 
 lea  ecx,[ebp-0x4] 
 push ecx 
 push eax 
 call edi 
 ... 



Implementation – Orp 

• Focused on Windows platform 
– Could be integrated in Microsoft’s EMET 

• CFG is extracted using IDA Pro 
– Implicitly used registers 
– Liveness analysis  (intra and inter-function) 
– Register categorization (arg., preserved, etc.) 
– Randomizations 
– Binary rewriting (relocations fixing, etc.) 
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Evaluation Strategy 

• How well will it stop future attacks? 
– Function of attack surface, attack intent, and 

attacker creativity 
• Proxy characteristics 

– How well it stops current attacks? 
– How likely it is to “destroy” gadgets? 

• Other considerations 
– Performance, ease of use/deployment, impact on 

functionality 
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Evaluation 

• Correctness and performance 
– Execute Wine’s test suite using randomized 

versions of Windows DLLs 
– This is relatively easy 
 

8/14/2012 18 



Effectiveness 

• What we did 
– Randomization coverage: how many gadgets do 

we break? 
• Challenge: how do we even determine what is a 

(useful) gadget? 

– Real-world exploits 
– ROP compilers 

• What we did not do 
– Create attacks, or invite others to do so 
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Randomization Coverage 
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Dataset: 5,235 PE files (~0.5GB code) from Windows, Firefox, iTunes and Reader 



Real-World Exploits 
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Exploit/Reusable Payload Unique Gadgets Modifiable Combinations 

Adobe Reader v9.3.4 11 6 287 

Integard Pro v2.2.0 16 10 322K 

Mplayer Lite r33064 18 7 1.1M 

msvcr71.dll (While Phosphorus) 14 9 3.3M 

msvcr71.dll (Corelan) 16 8 1.7M 

mscorie.dll (White Phosphorus) 10 4 25K 

mfc71u.dll (Corelan) 11 6 170K 

Modifiable gadgets were not always directly replaceable! 



ROP Compilers 

• Mona.py constructs DEP+ASLR bypassing code 
– Allocate a WX buffer, copy shellcode and jump 

 
• Q [SAB11] is the state-of-the-art ROP compiler 

– Designed to be robust against small gadget sets 

 
• Is it possible to create a randomization-

resistant payload? 
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ROP Compilers Results 

Non-ASLR Code Base Mona 
Orig.                Rand. 

Q 
Orig.                     Rand. 

Adobe Reader v9.3.4 ✓ ✗ ✓ ✗ 

Integard Pro v2.2.0 ✗ ✗ ✓ ✗ 

Mplayer Lite r33064 ✓ ✗ ✓ ✗ 

msvcr71.dll ✗ ✗ ✓ ✗ 

mscorie.dll ✗ ✗ ✗ ✗ 

mfc71u.dll ✓ ✗ ✓ ✗ 
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Both failed to construct payloads from non-randomized code! 



Discussion (-) 

• No guarantee that we can destroy all gadgets 
– No guarantee that we can destroy all instances of 

those gadgets that an attacker needs for a specific 
attack 

– No guarantee that we can destroy all useful gadgets 

• Probabilistic protection (attacker can get lucky) 
• Perhaps we can use complementary techniques 

for the remaining cases? 
– Does not impact any other security techniques 
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Discussion (+) 

• Reasonable risk metrics are (perhaps) possible 
– Fairly accurate estimate of number of gadgets 

changed 
– Relatively good estimate on average and 

individual-gadget entropy 
• Absent bugs in our code, no impact on 

program correctness 
• Static, low-overhead technique → good 

enough? 
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Summary 

• In-place code randomization 
– Requires no source code or debug symbols 
– (Practically) Zero performance overhead 
– Breaks 80% of gadgets 
– Prevented real exploits and ROP compilers 

• Even for a seemingly well-defined problem, 
definitive evaluation is challenging 

• Get the code (Python): 
http://nsl.cs.columbia.edu/projects/orp 
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