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Enterprises collect big data
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Hom ‘Moreisless’ to ‘Moreis more’

What can we do with the data?

Algorithms and systems to identify actionable
security events from big data.



Big datafor security

Traditional approach: Point products

Big data: Holistic view of an enterprise

Big data: Gobal view of enterprises




Challenges

» Data collection and storage —technical, legal, privacy, etc.
 Analysis infrastructure
 Scalable algorithms

e Limitations —what works and what doesn'’t



Example: Malicious domain detection

Scalable identification of malware-infected hosts
In an enterprise and of malicious domains
accessed by the enterprise’s hosts



Sateof theart

« @mmercial blacklists
e Trafficanalysis

» Machine learning and statistical analysis



Qur approach: Scalable graph inference

Host-Domain graph

Malfeasance inference as marginal
probability estimation

Minimal ground truth




Belief propagation [Ps2, YAno1]

Marginal probability estimation in graphs
* NP-complete

Belief propagation is fast and approximate
e [terative message passing




Message passing

Message(i — |) « (prior, edge potential, incoming messages)
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Belief computation

Belief(i) « (prior, incoming messages)

bi(xi) = Kg(Xi) Hmji(Xi)
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Qur approach

Ground truth from BP
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Experimental evaluation

» Graph “completeness”

» Sze of ground truth data

 Two class vs multi class classification
* Homogeneous vs heterogeneous data

» One enterprise vs multiple enterprises



HTTP Proxy logs and DHCPlogs

Logsfromalarge enterprise

» 98 HTTP proxy servers and 6 DHCP servers world wide
» 1 day’slogs: 2 billion events

» 144K hosts, 1.28Mdomains, and 12M edges

Priorsfrom ground truth (0.4% nodes) Edge potential
» 3Kknown bad domains: 0.99 (TippingPoint) . —
_ Benign Malicious
» 3Kknown good domains: 0.01 (Alexa)
« Unknown hosts and domains: 0.5 Benign 0.51 0.49
Malicious 0.49 0.51




BP scalesto enterprise settings

Java implementation of BP
12 core 2.67GHz desktop with 48GB RAM
Each iteration takes 2-4 minutes

(onvergesin 13 iterations



Malicious domain detection ROCPlot
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DNSrequest logs

Mllected from a medium sized ISP

« 2 (ops packet captures
» 1 week’'sdata: 1.1 billion DNSrequests
* 927K hosts, 1.32Mdomains, and 12M edges

Priors and edge potential similar to HTTP data
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IDSalertslogs

Ollected from 916 enterprises worldwide

« 5years data: 15.5 billion alerts
» 3.1Minternal nodes, 3.69M external nodes, and 21.4M edges

dassify nodes into 4 classes

 IDSexpert annotates 400 IDSsignatures

* Assign priors according to alert classes (6.6% nodes in ground truth)
* Edge potential according to homophilicrelationship



IDSlogs ROCplot
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Summary of results

Works well when the graph is complete (IDS), does poorly when the graph is
incomplete (DNS)

Requires minimal ground truth (HTTP), but more ground truth datais better (IDS
Works in multiclass settings (IDS)
Can handle heterogeneous data (DNS) and from multiple enterprises (IDS)

Discovers genuine anomalies, manually verified (HTTP)



Futurework

Gombine different data sources
e.g., use IDSlogs as ground truth for DNSlogs

Root cause analysis
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