
Experimenting with Live
Cyberattackers

for Testing Deceptions

Neil C. Rowe
U.S. Naval Postgraduate School

ncrowe at nps.edu
August 14, 2012

Defensive deception in cyberspace

Deception is a classic tactic in warfare – can’t we use
it against cyberattacks?

We can deceive as to who we are, what data and
resources we have, and what we are executing.

Deception can be effective because it is unexpected:
Most computers are very honest.

Deception can support either of two mutually
exclusive goals: Get rid of attackers, or keep them
logged in to exploit them (as in a honeypot).

Rowe's 32 “semantic cases” for deception

Space: location-at,
location-from, location-
to, location-through,
direction, orientation

Time: time-at, time-
from, time-to, time-
through, frequency

Participant: agent,
object, recipient,
instrument, beneficiary,
experiencer

Causality: cause, effect,
purpose, contradiction

Quality: content, value,
measure, order,
material, manner,
accompaniment

Essence: supertype,
whole

Precondition: external,
internal

Best cyberspace deceptions (in decreasing
order, by our analysis)

Offense:
 Agent
 Accompaniment
 Frequency
 Object
 Supertype
 Experiencer
 Instrument
Whole
 Content
 External precondition
Measure

Defense:
 External precondition
 Effect
 Content
 Time-through
 Purpose
 Experiencer
 Value
 Cause
 Object
 Frequency
Measure

Experimenting with cyberattackers
Why can’t information security be an experimental

science?
We can try defenses in real time against live

cyberattackers, not just theoretical attacks.
Of course cyberattackers are varied, so we need to run

experiments a long time. But data storage is not a
problem today.

Yes, we can use honeypots – but they do not need to be
passive. They can interact and manipulate
cyberattackers.

Experiment 1: Packet modification
Experiment 2: Scripted responses to protocols
Experiment 3: A fake Web site

Honeynet setup

Honeypot Snort alert counts clustered 3 ways

Experiment 1: Packet manipulations
We used Snort Inline to systematically modify bits in

packets sent to a honeypot.
We measured length of time and number of attacks in

different categories looking for a significant effect.
There were significant differences, both increases and

decreases in measures.
 Control Exp. 1A Exp. 1B Exp. 1C Exp. 1D Exp. 1E
FTP 0 0 0 68794 0 3735
ICMP Ping 155 162 198 239 194 186
MS-SQL 48 32 34 50 44 30
NETBIOS 76 19 15 96 22 173
POLICY 0 2 1 0 0 1
SHELL-
CODE

74 57 33 38 65 148

WEB 0 0 0 1 35 0

Weaknesses of direct packet modification

This is low-level interaction with networking
protocols (level 2 of the OSI/ISO hierarchy).

So figuring a good modification is difficult. Much
trial and error is necessary. It’s like changing a
character in a program hoping to improve it.

Our experiments were slow -- each took a week to get
sufficient data. Using many machines simultaneously
appears necessary.

The space of possible modifications to packets is
huge. So even with a honeypot farm, it would take a
long time to find good deceptions.

Experiment 2: Dynamically changing HoneyD

HoneyD is a open-source software for building low-
interaction honeypots. (“Low-interaction” means
simulating the first few steps of protocols, not their
full functionality.)

We faked a variety of configurations to see how
cyberattackers responded:

Configurations they responded to more than average
would make good deceptions for enhancing
honeypots and active scams on cyberattackers.

Configurations they responded to less than average
would make good deceptions for scaring away
cyberattackers.

Experiment 2 setup

Configuration changes per week

Week Experiment Week Experiment
1 Control: normal activity 9 Same as week 8
2 HoneyD with 32 addresses: too

aggressive and got turned off by
IT department

10 Control: normal activity

3 HoneyD with five addresses 11 Control, also no virtual machine
4 Added simulated services 12 Back to week 9 configuration
5 Removed one unhelpful service 13 Added telnet and modified virtual

Windows configurations
6 Switch of IP addresses since one

was getting more attacks
14 Control

7 Same as week 6 15 Like week 13 but with Web server
instead of telnet

8 Using only 4 best scripts

Data from Experiment 2

Week Honeyd
running?

Number
 of
packets

Number
of alerts

Different
alerts

ICMP
alerts

TCP
alerts

UDP
alerts

1 No 438661 388 4 388 0 0
3 Yes 1191410 8589 24 8366 2185 5
4 Yes 1313693 259776 36 255744 4016 16
5 Yes 701771 2525 12 1940 584 1
6 Yes 906893 2823 17 2176 647 0
7 Yes 740769 6686 11 2990 3696 0
8 Yes 897552 3386 14 2144 1242 0
9 Yes 951556 2957 19 2651 306 0
10 No 618723 1325 13 757 568 0
11 No 541740 756 16 476 270 10
12 Yes 995235 2526 10 2270 256 0
13 Yes 807712 3711 15 3445 266 0
14 No 518659 488 5 488 0 0
15 Yes 1066743 4694 14 3082 1612 0

Percentage of alerts by machine

Week Host
machines

Guest
machines

Honeyd
honeypots

Production
hosts

3 72.7 16.8 6.1 4.4
4 4.3 1.5 1.6 92.7
5 9.8 38.9 41.1 10.2
6 12.4 56.4 21.9 9.3
7 4.2 48.6 42.4 4.8
8 7.3 30.9 50.2 11.6
9 10.2 11.0 62.8 16.0
12 10.6 26.7 53.5 9.2
13 8.4 40.8 43.0 7.8
15 4.6 49.9 40.0 5.7

We had 4 virtual machines, and got different
kinds of traffic on each.

Ports and alerts

The most common ports attacked were in order: 445
(Microsoft Active Directory), 80 (HTML), 135
(Microsoft Endpoint Mapper), 139 (NETBIOS), 53
(DNS), and 22 (SSH).

The most common alerts were in order: NETBIOS,
Shellcode NOOPs, remote desktop requests, and
attempted heap corruption.

Experiment 3: A fake Web server

Attackers liked Web exploits, even when we did not
have a Web server.

So we simulated a Web server by modifying
HoneyD.

We tested different kinds of error messages to see
which ones caused the most effect on attackers.

Attackers liked certain words and certain addresses.
This suggests providing special responses to these.

Results from Experiment 3

Honeypot address Hits Configuration
..*.77 15,412 2003 Server with ftp and smtp service scripts
..*.70 9,900 Windows XP with no servicescript
..*.74 9,626 SQLserver with standard iis.sh script
..*.73 7,963 NT4 Web Server with iis.new.sh script
..*.79 7,668 Windows Xp with no service script

 December January February
Number of days running 12 21 9
Rate of all Honeyd log entries 3389 3913 5695
Rate of Snort alerts 176 208 1069
Rate of all Web log entries 16.1 74.1 30.9
Rate of GET commands 5.7 34.9 10.2
Rate of OPTIONS commands 8.9 35.9 18.7
Rate of HEAD commands 1.4 2.2 1.1

Favorite input strings and user names of attackers

These could be made names of pages and could also
receive responses when entered other ways.

 String Count
yes 717
no 492
admin 98
test 61
info 41
david 18
michael 18
mike 15
richard 15
internet 12
newpass 12
mickey 12

User
name

Count

test 98

info 76

admin 76

sales 46

web 36

contact 32

postmaster 32

office 24

spam 24

Web page
requested

Count

//phpmyadmin 27

/ 8

//pma 6

//mysql 5

//admin 4

/w00tw00t.at.ISC.
SANS.Dfind:)

2

//sql 2

//phpmanager 2

Attacker design of deceptive Web sites

1. Find in GETs what pages attackers are requesting,
what email addresses they are trying, and what
arguments they are supplying.

2. Give it to them: Make fake pages and fake responses
for all the requests you saw.

3. Go back to 1.

 This approach can be balanced with inclusion of
legitimate Web pages from other sites.

 Note attackers will probably want to PUT as well as
GET, at which point you can either deny them, say
you will PUT but don’t, or PUT a defanged copy.

General defensive deception: Software wrappers
Attacker

Operating system Applications
software 1

Applications
software 2

Wrapper

Component 1 Component 2
Wrapper

Component 3
Component 4

Decoy supervisor Intrusion-detection system

Decoying rules

Control wrappers with “deception control lists”
Resource Action Decoy response
C:\Program Files write Fake a correct write by providing

 false directory info subsequently
C:\Program
Files\Adobe\
Acrobat5.0

write Behave normally

C:\Program Files read Give fake info if any specified,
otherwise the real info

C:\Program Files execute Give one of 10 random error
messages if a fake write done,
else execute normally

C:\My Documents read,
write,
execute

Behave normally

Lineprinter lpt1 read,
write

Give error message if file in
"secrets"; delay 10 times normal
 if remote user; else print normally

Will deception hurt legitimate users?

Example ploy: Delete admin authorization + log out
5

39

25

install rootkit

close ftp

50

0.2

0.9

0.1

0.2

0.8

0.2

0.8

0.83

0.17
0.4

0.9

0

33

22 1 2 3 4

35

6

7 8

9

ping

ping research
vulnerabilities

research
vulnerabilities scan open port overflow

buffer
become
admin

become
admin

login

ftp

24

25

download rootkit

download rootkit download
secureport

download secureport

10

11

122

13

14 15 16 17 18 19

download
secureport

close ftp

decompress
rootkit

install
secureport

install
rootkit

logout

21 22 23 28 close ftp

decompress
secureport

install
secureport

test
rootkit

test
rootkit

test
rootkit

test
rootkit

test
rootkit

26

close ftp

27

29

30

decompress
secureport

decompress secureport

decompress rootkit
decompress

rootkit

install rootkit

32

31

ftp

download
secureport

download
secureport

180

70

167

107

61

36

101 100
99

97

100
75

74
62

96

86
85

48
74

65

55

47 30 11

36 24 1 0

0.33

0.8

0.67 0.17

0.8
0.2

34

test rootkit

ftp

0.25 0.75

40
decompress
secureport

close
port

close
port

0.83

20

55

51

0.1

0.9

0.1

0.6

106

102

103

104
105

open port

overflow
buffer

become
admin

close port

login

Compatibility (0-10) of action with generic excuse

Generic excuse
/

Attacker action

Network
down

Testing Bugs Comm.
faulty

Policy
change

Hacked Joker Deception

scan ports 10 5 5 10 10 5 8 10

connect at port 10 5 7 5 7 5 6 7

buffer overflow 0 10 10 10 7 5 2 10

file transfer
from

another site

10 5 5 5 10 7 8 7

decompress file 0 7 5 0 5 5 5 5

move file 0 7 5 2 8 5 5 7

test operating
system

2 10 10 2 7 10 8 10

Current research: Predicting future attacker actions

Most anticipatory defense uses a Bayesian model of
the attacker.

A better model would reason by analogy: Given
events A, f(A), g(A), predict f(g(A)).

We use a variant of this in the psychological theory of
“conceptual blending”.

0.09 0.09

0.15

0.10

0.18

0.12

0.27

0.21

0.28
0.26

0.24
0.21

0.33

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Comparison of Mean Prediction Accuracy when two atoms are swapped

Performance of analogical reasoning over time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

14
2

28
3

42
4

56
5

70
6

84
7

98
8

11
29

12

70

14
11

15

52

16
93

18

34

19
75

21

16

22
57

23

98

25
39

26

80

28
21

29

62

31
03

32

44

33
85

35

26

36
67

38

08

39
49

40

90

42
31

43

72

45
13

46

54

47
95

49

36

50
77

52

18

53
59

55

00

56
41

57

82

59
23

60

64

62
05

63

46

A
xi

s T
itl

e

Prediction Accuracy applied on Snort alerts

Greedy

Previous

LUT

VAR

MSB

SBM

VOMM

SSB-SM

SSB

SSB-F

Reasoning by analogy outperformed several versions of
Bayesian reasoning and other simple reasoning methods.

Conclusions

You can test deception tactics systematically against
live cyberattackers.

However, it takes some resources. With one
honeypot with four virtual machines, data came
slowly.

Both attacker-encouragement and attacker-
discouragement effects are valuable.

We only saw predominantly simpleminded attacks.
However, our collection techniques are general and
should catch any class of attack.

	Experimenting with Live Cyberattackers �for Testing Deceptions
	Defensive deception in cyberspace
	Rowe's 32 “semantic cases” for deception
	Best cyberspace deceptions (in decreasing order, by our analysis)
	Experimenting with cyberattackers
	Honeynet setup
	Honeypot Snort alert counts clustered 3 ways
	Experiment 1: Packet manipulations
	Weaknesses of direct packet modification
	Experiment 2: Dynamically changing HoneyD
	Experiment 2 setup
	Configuration changes per week
	Data from Experiment 2
	Percentage of alerts by machine
	Ports and alerts
	Experiment 3: A fake Web server
	Results from Experiment 3
	Favorite input strings and user names of attackers
	Attacker design of deceptive Web sites
	General defensive deception: Software wrappers
	Control wrappers with “deception control lists”
	Will deception hurt legitimate users?
	Example ploy: Delete admin authorization + log out
	Compatibility (0-10) of action with generic excuse
	Current research: Predicting future attacker actions
	Performance of analogical reasoning over time
	Conclusions

