
1/83

Empezaremos el trabajo pronto!?

 Uskoro po~iwemo!?!

 We’ll start soon !?!

我們將很快開始

 Zaczniemy wkrótce !?!

Mы скоро начнется !?! Nous allons bientôt commencer

 हम जल्द ह� शुरू कर� سنبدأ قريبا
Wir werden bald beginnen !?!

Inizieremo presto

2/83

From Identification to
Data Mining / Machine Learning

Handling Massive Datasets

Learning Algorithms and

Applications Laboratory (LAAL)

λα
αλ

Presenter: Vojislav Kecman

λα
αλ

3/83

Motivations for the first part of the talk
• There is no good control algorithm without knowing/having the

system’s (i.e., plant’s) dynamic model.

• System’s model can be derived in three ways:

A. Applying the first principles of conservation of M, E & M
B. Building a model by using the empirical data i.e. measurements –

NNs & SVMs
C. Embedding human knowledge into the (so-called) fuzzy models

• Here, we’ll say few words about a B part which is in control community
a.k.a. IDENTIFICATION, and which is the predecessor of DM / ML.

• The rest of the presentation will be devoted to the following facts:

• contemporary engineers and scientists are surrounded by, in fact, they are
immersed in an ocean of all kinds of massive data (a.k.a. measureme-
nts, images, patterns, sounds, samples, web pages, tunes, x-rays or ct
images, etc.)

• Humans can't handle usually ultra-large data sets collected today but,

 we must develop algorithms able to learn from such datasets and to
mine them efficiently

4/83

CONTENTS

• Identification = The Origin of Linear and NL
Models in Data Mining i.e. Machine Learning

• NNs & SVMs equal or not?
– Neural Networks (NNs) = Nonlinear Identification
– Support Vector Machines (SVMs) = Nonlinear Identification

• Handling Massive (Ultra-Large) Datasets by
SVMs (NNs can’t do that efficiently)

PART 1:

PART 2:

PART 3:

5/83

The Extremely Confusing Terminology*
 Support Vector Machines | Neural Networks | Prediction error method |

Partial Least Squares | Regularization | Bayes method | Maximum
Likelihood | Akaike's Criterion | The Frisch Scheme | MDL | Errors In
Variables | MOESP | Realization Theory | Closed Loop Identification |
Cramer - Rao | Identification for Control | N4SID | Experiment Design |
Fisher Information | Local Linear Models | Kullback-Liebler Distance |
Maximum Entropy | Subspace Methods | Kriging vs Gaussian Processes
| Ho-Kalman | Self Organizing maps | Quinlan's algorithm | Local
Polynomial Models | Direct Weight Optimization | PCA | Canonical
Correlations | RKHS | Cross Validation | Co-integration | GARCH | Box-
Jenkins | Output Error | Total Least Squares | ARMAX | Time Series |
ARX | Nearest neighbors | Vector Quantization | VC-dimension |
Rademacher averages | Manifold Learning | Local Linear Embedding |
Linear Parameter Varying Models | Kernel smoothing | Mercer's
Conditions | The Kernel trick | ETFE | Blackman--Tukey | GMDH |
Wavelet Transform | Regression Trees | Yule-Walker equations |
Inductive Logic Programming | Machine Learning | Perceptron |
Backpropagation | Threshold Logic | LS-SVM | Generalization | CCA | M-
estimator | Boosting | Additive Trees | MART | MARS | | EM algorithm |
MCMC | Particle Filters | PRIM | BIC | Innovations form | AdaBoost | ICA
| LDA | Bootstrap | Separating Hyperplanes | Shrinkage | Factor Analysis

 | ANOVA | Multivariate Analysis | Missing Data | Density Estimation |
PEM *L Ljung’s slide

6/83

Identification
• Historically – the very first control

systems were the STABILIZATION
control systems

• This means, they had to
stabilize a system at some
given operating point

• Hence, no matter whether the
true plant was nonlinear or not its
operation around a fixed set
point had been well described by
linear model

• This is the origin of a linear
system identification - still very
powerful, popular and useful set
of model building techniques

7/83

or,

which is the plane in 3D space.

Identification is the task of
finding

Linear systems can be described by linear differential equations,

which can be represented by transfer functions, and which are discretized and represented by difference
equations today

Identification
'y ay u+ = '' 'y ay by u+ + =

()

()

()

1
1

1 1

1 1 1 1

1
1

1 (1)

1 2 2
2

k k
k k k k k

k k k k k k k

k k k k k k k k

y Tuy y ay u y
T aT

y y ay u y aT y Tu
T

y y ay u y aTy y Tu
T

−
−

+ +

+ − + −

+
− + = → =

+

− + = → = − +

− + = → = − + +

() ()

() ()

() ()

1 1 1 12

2 2
1

1

2 2
1 2 1

1 2
2

or

2 0.5 1
1 0.5

or

2 0.5 1
1 0.5

k k k k k k k

k k k
k

k k k
k

ay y y y y by u
T T

bT y aT y T u
y

aT

bT y aT y T u
y

aT

+ − + −

−
+

− − −

− + + − + =

− + − +
=

+

− + − +
=

+

1 1 2k k ky y u−= Θ +Θ

a sΘ−

8/83

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

Discrete step k

O
ut

pu
t y

First order system response y

0 200 400 600 800 1000 1200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Discrete step k

In
pu

t u

PRB Input u

Identification

For the purpose of an
UNDERSTANDING an
identification and its both
geometry and algebra, these two
pictures are not of great interest.

However, the one on the next
slide is!

Time response of the 1st
order system to the pseudo
random binary (PRB) input
signal

9/83

Identification

0
0.2

0.4
0.6

0.8
1

0

2

4

6

8
0

1

2

3

4

5

6

7

8

PRB Input uk

Identification space of the first order system

Output yk-1

O
ut

pu
t y

k

Note, this is a noiseless case with a PRB input!

10/83

0

0.5

1

-0.2

0

0.2

0.4
-0.1

0

0.1

0.2

0.3

0.4

X
Y

Z

0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

-0.1

0

0.1

0.2

0.3

0.4

X

Y

Z

Identification
If there is a noise, and one uses a PR input with variable

amplitude the identification task for the first order system is
shown as below

uk-1 yk-1

yk

uk-1

yk-1

yk

11/83

Identification
It is the same procedure for higher order systems but we can’t visualize it.

For them, everything happens on/around the hyperplane.

The identification task is same: from the points given on (i.e., similar to) the
previous slide obtain the parameters of the hyperplane.

In other words, one should solve the following overdetermined system of

equation and the solution is obvious

In the previous 1st order system the first 9 values of the matrix X and vector y
are obtained from

the graph on page 8,

and they are given as:

Θ̂ =X y yXXXθ TT 1)(ˆ −=

Same equations are valid for any order system with/without the noise only
difference being that X matrix has more columns of y-s and u-s !



















=



















=

)10(

)3(
)2(

)9()9(

)2()2(
)1()1(

y

y
y

uy

uy
uy


yX

12/83

NL Identification
While linear control and linear identification are still very useful techniques

many contemporary control system are inherently NONLINEAR

Same as in linear systems, models can’t always be obtained by using the first
principles but, again, by using the sets of input and output measurements i.e., by

NL IDENTIFICATION

13/83

So, what’s different in respect to the linear identification?

Well, conceptually not too much, except that it is
harder because we often have neither an idea

about the type of nonlinear dependencies nor
the knowledge about the order of the system

present in the plant / system.

The remedy is - use the universal approximators for
modeling the nonlinearities. There are many at the
disposal today. It hadn’t been that way in the past!

NL Identification

14/83

NL Identification
Example 1: Consider the following NONLINEAR dynamic system. It is of the

first order again, just for the sake of a visualization.

yk+1 = sin(yk)*sin(uk) - uk /π

The red dots present the values of yk+1 for a given pairs of uk and yk. Historically,
Neural Networks (NNs) were the very first tools used for modeling NL dynamics!

-10 -5 0 5 10-2

-1

0

1

2
-3

-2

-1

0

1

2

3

u(k)

y(k)

y(
k+

1) Easy
case :
one to

one
mapping!

15/83

NL Identification
Example 2: Consider another NONLINEAR 1st order dynamic system.

y(k + 1) = 0.1y(k) + tan(u(k))

-1.5 -1 -0.5 0 0.5 1 1.5 -4

-2

0

2

4

-4

-2

0

2

4

u(k)

y(k)

y(
k+

1)
 Surface of the Plant Model

NN surface - colored

Plant surface - light

Easy
case :
one to

one
mapping!

16/83

NL Identification

However, things can become a little more complicated in NL case,

uk

yk
yk+1

if there is one to
many mapping!

For higher order
NL dependencies
this is the worst
case scenario
because it may be
hard to get it right

17/83

or y(k)
 () y k

 () y k n −
 () y k − 1

()  y k+ 1
NN

model

Plant
+

-

Disturbance

Series-Parallel Parallel or

 () y k

 z -1 z -1 z -1

 z -1 z -1

 y(k+1) u(k)

 u(k - n)

 u(k - 1)

 u(k)

NL Identification
How is it done?

Note, the scheme is same for the linear identification, a
difference being that instead of NN one has a linear neuron.

18/83

NL Identification
had started by using NNs with sigmoidal activation functions a.k.a.
multilayer perceptron because they had been the very first popular

universal approximators being able to approximate any NL function to any
desired degree of accuracy.

wj j j jj

J
ϕ (, ,)x c Σ

=∑ 1o= F(x) =

NN is a sum of weighted
basis functions, and so are
many other models today

x1

 xi

 xI = 1

V W

vji
wj

 yJ = +1

 y1

 yj

 yJ - 1





V

19/83

• Here, we won’t go into a broad field of NN
based control (there was plenty of control at
this meeting anyway)

• We’ll stay in the field of NL identification a.k.a
data mining a.k.a machine learning with an
aim to clarify, and to point to, an ‘equality’ of
the two most popular NL data modeling tools -
NNs & SVMs

• Note, SVM is also a model in the form of a
sum of weighted basis functions

 Let’s compare two modeling tools NNs & SVMs

NL Identification

20/83

If you may still have some interests in NNs
and/or SVMs based control check literature,

there are plenty of sources.

If you want to see how I was doing it ~15 years ago
check it in my book published by The MIT Press:

http://www.support-vector.ws

or search after adaptive backthrough
(ABC) control for some of my papers.

http://www.support-vector.ws/�
http://www.support-vector.ws/�
http://www.support-vector.ws/�

21/83

The two universal approximators i.e., identifiers
i.e., learning machines are

SVMs and NNs
(however remember, there are other models too).

WHAT are DIFFERENCES and SIMILARITIES?

WHATCH CAREFULLY NOW !!!

NL Identification = NNs & SVMs

22/83

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

 y2

 yj

 yj+1

 yJ

This is a Neural Network,

wj j j jj

J
ϕ (, ,)x c Σ

=∑ 1F(x) =

23/83

and, this is a Support Vector Machine.

AND AGAIN !!!

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

 y2

 yj

 yj+1

 yJ

wj j j jj

J
ϕ (, ,)x c Σ

=∑ 1F(x) =

24/83

This is a Neural Network,

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

 y2

 yj

 yj+1

 yJ

wj j j jj

J
ϕ (, ,)x c Σ

=∑ 1F(x) =

25/83

and, this is a Support Vector Machine.

There is no difference

in the structure!

However, there is an important
difference in LEARNING.

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

 y2

 yj

 yj+1

 yJ

wj j j jj

J
ϕ (, ,)x c Σ

=∑ 1F(x) =

26/83

Where then the

BASIC DIFFERENCES between

NNs and SVMs

(in fact, among all the other various ML models)

are coming from?

27/83

Well ! There are two fundamental
issues in any data modeling

• They are the questions of:

• the FORM

 and

• the NORM

28/83

The NORM
• covers – the type of the cost, i.e., merit, i.e.,

loss, i.e., fitness, i.e., objective, function which
is optimized over the parameters of interest
(here, we call them weights).

The FORM
• covers – the type of the mathematical structure/

model and in particular the type of the kernel
(SVM), i.e., activation (NN), i.e., basis (RBF),
i.e., membership (FL) function used.

29/83

• ‘All’ our models in ML are ‘same’ i.e., they are the

SUM OF THE WEIGHTED BASIS FUNCTIONS

The FORM

1
() (, ,)J

j j j jj
o f w ϕ

=
= = Σ∑x x c

Hence,

ONE MODEL = MANY MODELS
Polynomial approximations, Fourier expansions, NN, SVMs, wavelets, JPEG,
MPEG, Fuzzy Logic models, …, many others … they ALL are

Hyperparameters to be found during
the learning (training) phase

30/83

• In essence, we use primarily (only) two NORMs (cost
functions) in ML which are the

• MINIMIZATION of the SUM OF ERROR SQUARES in the
OUTPUT space (linear standard classifier/regressor, FFT,
JPEG, MPEG, MLP NN and RBF NN) – L2 norm

 and the (most recently introduced) the

• MAXIMIZATION of the MARGIN in the INPUT space

expressed as a MINIMIZATION of the SUM OF
WEIGHTS SQUARES (SVMs)

(a variant of both may be the L1 norm or some composite norm)

The NORM

31/83

The Norms (Loss Functions) of NNs and SVMs

 A classic multilayer perceptron (MLP),
 FFT, polynomial models

 Regularization (RBF) NN

 Support Vector Machines

In the last expression the SRM principle uses the VC dimension h
(defining model capacity) as a controlling parameter for minimizing E,



2

1 1
|| || (,)

P P

i i
i i Capacity of

machineClossenes to
data

E L f L h lε ελ
= =

= + = + Ω∑ ∑P


E d f i i

Closeness to data i

P

= −
=
∑ ((,)) x w 2

1

E d f f i i

Closeness to data Smoothness i

P

= − +
=
∑ ((,)) | | | | x w P 2 2

1

λ

‘confidence interval’

e

32/83

and, h is controlled by the norm of the weight vector
w. The smaller the norm, The bigger the margin

Thus, the learning algorithm for SVMs is given as the
classic QP problem:

 minimize
 J = wT w = || w ||2

 subject to constraints
 yi[wT xi + b] ≥ 1

Margin

maximization!

Correct

classification!

Remember this inequality constraints, they IMPOSE the
SPARSENESS ONTO THE SOLUTION, and they make SVMs
suitable tool for handling MASSIVE (ULTRA-LARGE) datasets
(see slide 45)

33/83

There are two basic, constructive approaches to the
minimization of the right hand side of previous equations*

- Choose an appropriate structure (order of polynomials, number
 of HL neurons, number of rules in the FL model) and, keeping the
 confidence interval fixed in this way, minimize the training error
 (i.e., empirical risk), or

- keep the value of the training error fixed (equal to zero or equal to
 some acceptable level) and minimize the confidence interval.

Classic NNs implement the first approach (or, some of its
sophisticated variants) and SVMs implement the second strategy.

In both cases the resulting model should resolve the trade-off between
under-fitting and over-fitting the training data.

The final model structure (order) should ideally

match the learning machines capacity with training data complexity.
* (Vapnik, 1995 and 1998)

34/83

Can we say that NNs and SVMs are equal?

NO and YES!

NO - because the NORMS (and, thus, the
learning algorithms i.e., the final

parameters of the models) are different.

YES - because they are the very same
mathematical structure which is

a SUM OF WEIGHTED BASIS (ACTIVATION,
KERNEL) FUNCTIONS

35/83

Few remarks about properties of SVMs
and NNs are in order now:

• One can expect SVMs will perform better
 for sparse data,

• SVMs algorithms can handle ultra-large
 datasets (millions of samples), while
 NNs’ ones can’t,

• For smaller and dense data corrupted by
 normal noise NNs can be competitive

36/83

We have just ended the second part of
this session and now comes the last
part about handling massive i.e.,

ultra-large datasets.

Some of you are already facing big
datasets, and some will meet them soon.

Our argument here is that, as of
today, only SVMs are able to handle

massive datasets efficiently.
Why, discussing massive datasets?

37/83

Industrial Demands Are Growing
• Data mining in large plants/process data bases

Stora Enso Borlänge, Sweden, 75000 control signals, 15000 control loops,
Sampling at 1Hz would produce huuuuuge/massive datasets (from L. Ljung), in
which you want to find fault behaviour, outliers, wrong signals, new
disturbancies, novelties, something unexpected,

For all these tasks most often CLASSIFICATION algorithms will be the tool!

38/83

Why are we talking about the
Classification Algorithms

at
the Resilient Control Systems

Conference?

Well, the answer is on the next slide!

39/83

Resiliency may rely on the timely recognition of the
FAULTS i.e, on the Anomaly, i.e., Novelty, Detection

Survey on the

FAULT DIAGNOSIS METHODS*

* From R. Isermann’s book – Fault-Diagnosis Systems

40/83

43 more slides to go!

I am enjoying it till now,
indeed !

What about you ?

41/83

1st, let’s clarify the 3rd part:
What is an ultra-large dataset?

• A concept of size is continuously changing with
both data producing capacities and advances in
hardware, but let’s define it (for today only):

• SMALL < ~ 10,000 samples
• MEDIUM < ~ 100,000 samples
• LARGE up to ~ 1million samples
• ULTRA-LARGE = ‘LARGER’ than LARGE

However, remind that the training doesn’t depend upon the size of
data only. We’ll see that some medium datasets are much tougher

nuts to crack than some ultra-large samples collections!!!

42/83

We now depart from dynamic
systems, identification and control

and

talk about any large datasets mining

where we are typically given the data
(samples, examples, measurements,

observations, records, …) in the
following form

43/83

General data, having N samples, is given as:

11 12 1 1

21 21 2 2

1 2

1
1

, , or

1

n

n
Class Regress

N N Nn N

x x x y
x x x y

x x x y

+    
    −    = = =
    
    −    

X Y Y





    



1st data pair

Nth data pair

In control and identification X entries are delayed inputs x(k-i)
and outputs y(k-i) while Y entries are y(k).

44/83

LARGE DATA SETS!

How to handle them?
What algorithm is suitable?
What hardware i.e. software
solution fits them the best?

45/83

As of today, SVMs only can successfully deal
with (ULTRA)LARGE Datasets. SVMs only!

• How comes? What about the other ML models? Why
is it this way?

• Well, it follows from the SVMs’ learning algorithm
which is solving the QP problem with N inequality
constraints and 1 equality constraint, where the
former (see slide 32)

• IMPOSE the SPARSENESS ONTO THE SOLUTION!

• This then, in turn, makes the training phase
feasible and expresses the model in terms of a
small number of the so-called Support Vectors!

Sorry for such a bold claim, but the explanations below may help to understand it!

46/83

There are few possibilities to learn
from ultra-large data sets by SVMs

* parallelize the existing QP solvers

** implement ‘novel’ parallel QP solvers

*** use GPUs i.e., manycore machines

****change the SVMs algorithm through
 a ‘novel’ geometry based insights =
 hulls and spheres (balls) approaches

47/83

Classic Parallelization
• There was a series of various attempts to

parallelize SVMs algorithms on super-
computers, clusters and grid machines starting
from ~ 2003 and lasting till today.

• Table of examples is on the next 2 slides
 - the NEC Labs’ patented cascade SVM

 parallelization approach (Graf et al &
 Vapnik, 2006) is not forgotten in the next
 table - check it at NIPS 2004. It belongs to
 the item *parallelize the existing QP solvers,
 from previous slide)

48/83

Author

Processor

Algorithm

Training
Speed up

Testing
Speed up

2003, Zanni
MPI

(Cray T3E, 32
processor)

VPDT
variable projection

decomposition
technique

1.8 -6.1
(2 - 16 processor) N/A

2005, Serafini and
Zanni Cluster

PGPDT
A Parallel Gradient
Projection-based
Decomposition
Technique for

Support Vector
Machines

5.2
(8 processor / single

processor)
N/A

2006, Cao et al.
MPI

(Cluster of multiple
CPUs)

 PSMO
Parallel SMO

93 (over SVM and
LIBSVM)

(32 Processor)
N/A

2006, Serafini and
Zanni Cluster

PGPDT
A Parallel Gradient
Projection-based
Decomposition
Technique for

Support Vector
Machines

7.3 MNIST
12.8 Cover test

(16 processor / single
processor)

2 - 25 KDDCUP
(24 - 32 processor /
single processor)

N/A

2007, Chu et al. Cluster (Map-
Reduce) SMO 1.6 - 1.96

(2 core/1 core) N/A

2007, Dominik
Burgger

Kepler Cluster
(Every node has

two cores)
(MPI)

πSVM
Extension of

LIBSVM

3.8 - 16
(LIBSVM) N/A

49/83

Author Processor Algorithm Training
Speed up

Testing
Speed up

2008 , Thanh-Nghi
Do et al.

Nvidia GeForce
8800 GTX

 LS-SVM
Extended Least
Squares SVM

47 - 100
(over LIBSVM on

CPU)
N/A

2008, Catanzaro et
al.

Nvidia GeForce
8800 GTX

GPU, single
precision

SMO

9-35 (GPU Adaptive
over LIBSVM)

81-135 (GPU over
LIBSVM)

5-24 (GPU over
CPU)

N/A

2009, Carpenter NVIDIA GTX 260
GPU

SMO (cuSVM)
mixed precision

algorithm

17-32 (over
LIBSVM)

22-172 (normal
CPU)

2009, Harvey 2 GPU GPUSVM 89 - 263
(LIBSVM) N/A

2009, Meligy Grid Based
(C and MPI)

DSVM
(Distributed SVM)

PSVM
(parallel of Support

Vector Sector
Machine)

not implemented N/A

2009, Woodsend
Hybrid

MPI/OpenMP
Cluster (quad-core)

OOPS
(Object-Oriented
Parallel Solver)

2.2 - 2066 (Milde)
43 - 125 (PSVM)

94 - 206 (PGPDT)
N/A

2010, Lopez et al. NVIDIA Tesla C1060
GeForce 8800 GT

P2SMO
Parallel-Parallel

SMO

3 - 57 (Training)
3 - 112

(Classification)
N/A

50/83

SVMs code on GPUs
developed at VCU

Tesla card S1060 (first series)

8 Tesla GPUs in 4U server

51/83

GPUSVM Experimental Results for Benchmark Datasets

• Performance comparisons between LIBSVM and GPUSVM

on both accuracy and speed will be shown on next 8 slides.

• Accuracy comparison:

– Small datasets: Accuracies are shown for training sets.
– Medium datasets: Accuracies are shown for both training and

testing sets.
– Large datasets: Accuracies are shown for testing sets.

• Speed comparison:
– Small datasets: The training time is too trivial to be shown.
– Medium/Large datasets: The training /testing time are shown for

standard LIBSVM (using Xeon 1-core), OpenMP enabled

52/83

GPUSVM Benchmark Datasets for
Hyperparameters C and

Scale Dataset # of training
data

of testing
data

of
features

of
classes

C

small

glass 214 N/A 9 6 512 2
iris 150 N/A 4 3 16 0.5

wine 178 N/A 13 3 1 0.25
heart 270 N/A 13 2 0.5 0.0625
sonar 208 N/A 60 2 4 0.125

breast-
cancer

683 N/A 10 2 0.25 0.125

medium

adult 32,561 16,281 123 2 1 0.0625
usps 7,291 2,007 256 10 128 0.015625
letter 15,000 5,000 16 26 16 8

shuttle 43,500 14,500 9 7 1 1
web 49,749 14,951 300 2 64 8

mnist 60,000 10,000 780 10 16 0.003096

large
usps-ext 266,079 75,383 675 2 1 0.03125
covtype 500,000 81,012 54 7 1 1
face-ext 489,410 24,045 361 2 0.001 1

γ
γ

53/83

GPUSVM & LIBSVM Accuracy Performance Comparisons

Dataset SVM Training
accuracy

of
SVs

glass
LIBSVM 98.5981% 133

GPUSVM 98.1308% 144

iris
LIBSVM 98% 25

GPUSVM 98% 27

wine
LIBSVM 99.4382% 68

GPUSVM 99.4383% 75

heart
LIBSVM 85.1852% 146

GPUSVM 85.1852% 146

sonar
LIBSVM 100% 150

GPUSVM 100% 150

breast-
cancer

LIBSVM 97.2182% 91

GPUSVM 97.2182% 91

Dataset SVM Training
accuracy

Testing
accuracy

of
SVs

adult
LIBSVM 85.7928% 85.0132% 11647

GPUSVM 85.7928% 85.0193% 11587

usps
LIBSVM 99.9863% 95.6153% 1785

GPUSVM 99.9863% 95.715% 1923

letter
LIBSVM 100% 96.82% 10726

GPUSVM 99.8467% 97.38% 11936

shuttle
LIBSVM 99.5149% 99.6069% 3109

GPUSVM 99.4736% 99.5655% 3667

web
LIBSVM 99.4553% 99.4515% 35231

GPUSVM 99.4553% 99.4515% 35220

mnist
LIBSVM 99.5917% 98.03% 9738

GPUSVM 99.4617% 98.27% 12919

Small datasets Medium datasets

54/83

GPUSVM &LIBSVM Accuracy Performance Comparisons

Dataset SVM Testing accuracy # of SVs

usps-ext
266,079

LIBSVM 99.2332% 39570

GPUSVM 99.2332% 38598

Covtype
500,000

LIBSVM 80.5028% 246444

GPUSVM 80.3362% 267373

face-ext
489,410

LIBSVM 98.037% 52488

GPUSVM 98.037% 34992

Large datasets

55/83

GPUSVM & LIBSVM Speed Performance Comparisons

Dataset SVM Processor Training time Speedup Testing time Speedup

Adult
32,561

LIBSVM
Xeon 1-core 60.634s 1x 20.273s 1x

Xeon 12-core 8.998s 6.7386x 2.216s 9.1485x

GPUSVM Tesla C2070 7.636s 7.9405x 0.649s 31.2373x

Usps
7,291

LIBSVM
Xeon 1-core 4.901s 1x 2.113s 1x

Xeon 12-core 1.331s 3.6822x 0.446s 4.7377x

GPUSVM Tesla C2070 2.158s 2.2711x 0.081s 26.0864x

Letter
15,000

LIBSVM
Xeon 1-core 37.768s 1x 4.666s 1x

Xeon 12-core 11.902s 3.1712x 1.88s 2.4819x

GPUSVM Tesla C2070 10.554s 3.5785x 0.445s 10.4854x

Shuttle
43.500

LIBSVM
Xeon 1-core 9.379s 1x 2.402s 1x

Xeon 12-core 2.047s 4.5818x 0.642s 3.7414x

GPUSVM Tesla C2070 2.238s 4.1908x 0.526s 4.5665x

Web
49,749

LIBSVM
Xeon 1-core 1450.933s 1x 59.278s 1x

Xeon 12-core 199.784s 7.2625x 6.819s 8.6931x

GPUSVM Tesla C2070 71.291s 20.3523x 1.217s 48.7083x

Mnist
60,000

LIBSVM
Xeon 1-core 256.579s 1x 86.559s 1x

Xeon 12-core 64.04s 4.0065x 10.183s 8.5003x

GPUSVM Tesla C2070 39.552s 6.4871x 1.124s 77.0098x

Medium datasets

56/83

GPUSVM & LIBSVM Speed Performance Comparisons

Dataset SVM Processor Training time Speedup Testing time Speedup

usps-ext
266,079

LIBSVM
Xeon 1-core 1511.9m 1x 190.7m 1x

Xeon 12-core 66.4m 22.8x 8.4m 22.7x

GPUSVM TeslaC2070 8.4m 180x 0.5m 381.4x

Covtype
500,000

LIBSVM
Xeon 1-core 1347.7m 1x 198m 1x

Xeon 12-core 59m 22.84x 8.7m 22.76x

GPUSVM TeslaC2070 19.4m 69.5x 0.7m 282.9x

face-ext
489,410

LIBSVM
Xeon 1-core 6522.8m 1x 195m 1x

Xeon 12-core 286.5m 22.77x 8.5m 22.9x

GPUSVM TeslaC2070 5.3m 1230.7x 0.3m 650x

Large datasets

57/83

Graph for training time comparisons
between GPUSVM and LIBSVM

Large datasets
Note the logarithmic scale here. Thus, we are talking about the ORDER OF MAGNITUDES SPEED UP.

58/83

GPUSVM & LIBSVM Performance Comparison Summary

• Accuracy performance comparisons:
– GPUSVM is as accurate as LIBSVM. Both use same working

set technique (SMO) for solving QP problems.
– GPUSVM uses single precision floating point and LIBSVM uses

double precision floating point. (This causes the slight difference
between the total number of support vectors acquired through
the learning phase and their corresponding alpha values. No
effects on the accuracy whatsoever!)

– GPUSVM uses OvA for multiclass problems while LIBSVM uses
OvO. This also causes a tiny accuracy performance differences.

• Speed performance comparisons:
– LIBSVM can be accelerated by enabling the built-in OpenMP

feature which utilizes the full power of multi-core CPU.
– GPUSVM has close performance on medium datasets

compared to LIBSVM with OpenMP in training phase. However,
GPUSVM is always faster than OpenMP enabled LIBSVM in

59/83

Now, let’s move from the
accelerations based

primarily on hardware to the
speeding up by a ‘new’,

geometry inspired,
algorithm(s) i.e., software

60/83

The ‘novel’ approaches,
seemingly promising for
(ultra)large datasets, are

based on geometric
insights disguised in the

shapes of hulls and
spheres (balls)

 Convex Hulls
 Core (Ball) Vector Machines
 Sphere Vector Machines

We’ve played with hulls,
and we abandoned them for

now, but the basic idea is

SVM - Geometric Approaches

62/83

21 more slides to go!

I am still enjoying it !

 I hope, you’re having fun too

SVMs as the Reduced Convex Hulls

-find two closest points belonging to the
 two Convex Hulls

Reduced Convex Hulls
•Can be solved using existing algorithms:

– Closest Point Problem
• Gilbert's algorithm

– Nearest Point Problem
•Mitchell-Dem'yanov-Malozemov

• Schlesinger-Kozinec

●Non-separable problems can be solved using
Reduced Convex Hulls

●Usually slower than SMO implementations
 and thus put aside for now

65/83

Core i.e., Ball, Vector Machines

•Solving minimal enclosing ball problem

•is equivalent to solving a modified L2 SVM

•in a feature space defined by kernel

66/83

Core Vector Machines
At each iteration:
- one violating point is added to the core-set
- Minimum Enclosing Ball problem is solved for all points
belonging to the core-set (using SMO algorithm)

67/83

Ball Vector Machines
At each iteration:
- instead of solving entire QP problem just one update is
 performed - ball is shifted towards the max violating point

68/83

Enclosing Sphere Machines (ESM)
Our approach

At each iteration two vectors are found:
- one that violates “ball enclosing” conditions
- one that violates KKT conditions:

and ball is shifted along the line joining these two vectors

69/83

Now only, we present results of
extremely extensive comparisons of
one of the most powerful & possibly the

most used off-shelf SVM software
LIBSVM (both L1 & L2 models) vs. the
last two geometric approaches (balls

and spheres) for training SVMs,

in a very strict

DOUBLE (NESTED) k-fold CROSS
VALIDATION i.e. RESAMPLING

experiment

70/83

Remind!

k-fold CROSS VALIDATION is for
MODEL (i.e., its HYPERPARAMETERS)

SELECTION

while a

DOUBLE (NESTED) k-fold CROSS
VALIDATION i.e., RESAMPLING is for

MODELS COMPARISONS

71/83

Comparisons results for datasets below

Data set Number of
classes

Number of
attributes

Number of
samples

optdigits 10 64 5,620
satimage 6 36 6,435
usps 10 256 9,298
pendigits 10 16 10,992
reuters 2 8,315 11,069
letter 26 16 20,000
adult 2 123 48,842
w3a 2 300 49,749
shuttle 7 7 58,000
web 2 300 64,700
ijcnn1 2 22 141,691
intrusion 2 127 5,209,460

S

M

L

UL

72/83

optidigits satimage usps pendigits reuters letter
0

50000

100000

150000

200000

250000

300000

350000

SphereVM
BallVM
L2 SVM
L1SVM

Learning time - S & M data sets

5,620 6,435 9,298 10,992 11,069 20,000

73/83

optidigits satimage usps pendigits reuters letter
0.88

0.9

0.92

0.94

0.96

0.98

1

SphereVM
BallVM
L2 SVM
L1SVM

Accuracy - S & M data sets

5,620 6,435 9,298 10,992 11,069 20,000

74/83

optidigits satimage usps pendigits reuters letter
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SphereVM
BallVM
L2 SVM
L1SVM

Ratio of number of SVs
 S & M data sets

5,620 6,435 9,298 10,992 11,069 20,000 9,298 20,000 9,298

75/83

adult w3a shuttle web ijcnn1 intrusion
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

SphereVM
BallVM
L2 SVM
L1SVM

Learning time – M & L & UL data sets

48,842 49,749 58,000 64,700 141,691 5,209,460

Notice that both LIBSVMs were not able to finish the learning here. L1 LIBSVM needed 60h/1 iteration only

5 M sec

4 M sec

3 M sec

2 M sec

1 M sec

52 days is here ~ 2 MONTHS which is huge for even the most patient researchers

More than 1 MONTH is here, which is also huge for even the most patient researchers

Compare these times
and check our
previous statements!

76/83

adult w3a shuttle web ijcnn1 intrusion
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SphereVM
BallVM
L2 SVM
L1SVM

Accuracy - M & L & UL data sets

48,842 49,749 58,000 64,700 141,691 5,209,460

Notice that both LIBSVMs were not able to finish the learning here. L1 LIBSVM needed 60h/1 iteration only

77/83

adult w3a shuttle web ijcnn1 intrusion
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SphereVM
BallVM
L2 SVM
L1SVM

Ratio of number of SVs
 M & L & UL data sets

48,842 49,749 58,000 64,700 141,691 5,209,460

78/83

adult usps letter shuttle web mnist
0

1

2

3

4

5

6

7

8

9

SphereVM
BallVM
L2 SVM
L1SVM

Multithreading by OpenMP*
A speedup for 12 threads

48,842 58,000 64,700 20,000 9,298 70,000

* Open Multi-Processing

79/83

Thus, sphere SVMs seem to offer both
a capacity to handle, and significant
accelerations for, both HARD (not

necessarily UL) and ULTRALARGE
datasets (over 1 mil samples).

The very next (we believe a feasible)

step may well be implementing spheres
on GP GPUs speeding them even more

80/83
2 4 6 8 10 12

0.5

1

1.5

2

2.5

3

x 10
4

Sp
ee

du
p

R
at

io
L

/ N
L

Speedup Ratio L / NL

2 4 6 8 10 12

-5

0

5

10

15

20

25

30

35

Ac
cu

ra
cy

 D
iff

er
en

ce

Accuracy Difference NL - L

Data set

1 optdigits
2 satimage
3 usps
4 pendigits
5 reuters
6 letter
7 adult
8 w3a
9 shuttle
10 web 11
ijcnn1 12
intrusion

of data
1 - 3,823
2 - 4,435
3 - 7,291
4 - 7,494
5 - 7,770
6 - 15,000 M
7 - 32,561 M
8 - 4,912
9 - 43,500 M
10 - 49,749 M
11 - 49,990 M
12 - 4,898,431 UL

The Last But Not the Least
Always Run Linear SVM First

Here, we run our LINEARSVM

81/83

Some final thoughts on the topic of learning from
MASSIVE datasets

• An ever-increasing number of data samples
requires rethinking about how to approach the
machine learning tasks

• The very rethinking must include advances in
both HARDWARE and ALGORITHMS

• GPU manycore processors are the first
obvious choice for the hardware right now

• The next good option is to use some ideas from
the geometry

• Our spheres algorithm for training SVMs have
been successfully implemented and presented

82/83

CONCLUSIONS
• Linear Systems Identification Is The Origin of

Machine Learning / Data Mining
• NNs & SVMs Do Non-Linear (NL) Identification
• Basic NL Modeling Tools Are Same Mathematical

Structures. They Are The Sum of Weighted
Basis/Activation/Kernel Functions

• Resilient Control Systems Will Rely on Good Fault
Detection Algorithms for Massive Datasets, Which
Will Most Likely Be Some of Standard
Classification Algorithms

• As of Today, The SVMs Seem to Be The Only Tool
Able to Handle Massive Datasets

83/83

Thanks for both being patient
and having stamina
•Q

– U
•E

– S
» T T T T T T T T T T T T T T >

– I
•O

– N
•S
 PLEASE !!!

Ask now,
have

dilemma
later

84/83
F(x) = ∑

=

N

k
kk bothorkxborkxa

1
),cos(),sin(

BUT, what if we want to
learn the frequencies?

!!! NONLINEAR
LEARNING PROBLEM !!!

o = F(x)

V
is prescribed

w

vji wj

+1

y1

y2

yj

yj+1

yJ

x

1

2

4

n

Classic approximation techniques in NN graphical appearance
FOURIER SERIES

AMPLITUDES and PHASES of sine (cosine) waves are unknown,
but frequencies are known because

Mr. Joseph Fourier has selected frequencies for us -> they are
INTEGER multiplies of some pre-selected base frequency.

And the problem is LINEAR!!!

It is ‘same’

with POLYNOMIALS

w

85/83

Another classic approximation scheme is a

POLYNOMIAL SERIES

F(x) xi

∑
=

=
N

i
iw

0

o = F(x)

w

vji wj

+1

y1

y2

yj

yj+1

yJ

x

1

2

3

4

5

V
is prescribed

With the prescribed
(integer) exponents

this is again a LINEAR
APPROXIMATION

SCHEME. Linear in
terms of parameters to
learn and not in terms

of the resulting
approximation

function. F(x) is NL
function for i > 1.

86/83

Environment of our
experiments was as follows

SVMs with Gaussian kernel
Double 5x5 CV,
8x8 hyperparameters (C, σ)
which amounts to
1600 runs for each dataset

Runs for each dataset have
been performed on 5
Xeon E5520 2.3 GHz CPUs

Training time is then
summed up i.e., given as a
single CPU time needed.

	Slide Number 1
	Slide Number 2
	Motivations for the first part of the talk
	CONTENTS
	The Extremely Confusing Terminology*
	Identification
	Identification
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	So, what’s different in respect to the linear identification?��Well, conceptually not too much, except that it is harder because we often have neither an idea about the type of nonlinear dependencies nor the knowledge about the order of the system present in the plant / system.��The remedy is - use the universal approximators for modeling the nonlinearities. There are many at the disposal today. It hadn’t been that way in the past!
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	If you may still have some interests in NNs and/or SVMs based control check literature, there are plenty of sources.���If you want to see how I was doing it ~15 years ago check it in my book published by The MIT Press:��http://www.support-vector.ws���or search after adaptive backthrough (ABC) control for some of my papers.
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Where then the� �BASIC DIFFERENCES between ��NNs and SVMs��(in fact, among all the other various ML models)��are coming from?
	Well ! There are two fundamental issues in any data modeling
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Can we say that NNs and SVMs are equal?��NO and YES!��NO - because the NORMS (and, thus, the learning algorithms i.e., the final parameters of the models) are different. ��YES - because they are the very same mathematical structure which is ��a SUM OF WEIGHTED BASIS (ACTIVATION, KERNEL) FUNCTIONS
	Slide Number 35
	We have just ended the second part of this session and now comes the last part about handling massive i.e., ultra-large datasets.��Some of you are already facing big datasets, and some will meet them soon.��Our argument here is that, as of today, only SVMs are able to handle massive datasets efficiently.�Why, discussing massive datasets?
	Industrial Demands Are Growing
	Why are we talking about the Classification Algorithms �at �the Resilient Control Systems Conference?
	Resiliency may rely on the timely recognition of the FAULTS i.e, on the Anomaly, i.e., Novelty, Detection
	Slide Number 40
	1st, let’s clarify the 3rd part:�What is an ultra-large dataset?
	We now depart from dynamic systems, identification and control��and� �talk about any large datasets mining��where we are typically given the data (samples, examples, measurements, observations, records, …) in the following form
	General data, having N samples, is given as:
	LARGE DATA SETS!��How to handle them?�What algorithm is suitable?�What hardware i.e. software solution fits them the best?
	As of today, SVMs only can successfully deal with (ULTRA)LARGE Datasets. SVMs only!
	There are few possibilities to learn from ultra-large data sets by SVMs��* parallelize the existing QP solvers��** implement ‘novel’ parallel QP solvers��*** use GPUs i.e., manycore machines ��****change the SVMs algorithm through � a ‘novel’ geometry based insights = � hulls and spheres (balls) approaches
	Classic Parallelization
	Slide Number 48
	Slide Number 49
	SVMs code on GPUs �developed at VCU
	GPUSVM Experimental Results for Benchmark Datasets
	GPUSVM Benchmark Datasets for Hyperparameters C and
	GPUSVM & LIBSVM Accuracy Performance Comparisons
	GPUSVM &LIBSVM Accuracy Performance Comparisons
	GPUSVM & LIBSVM Speed Performance Comparisons
	GPUSVM & LIBSVM Speed Performance Comparisons
	Graph for training time comparisons between GPUSVM and LIBSVM�Large datasets
	GPUSVM & LIBSVM Performance Comparison Summary
	Now, let’s move from the accelerations based primarily on hardware to the speeding up by a ‘new’, geometry inspired, algorithm(s) i.e., software
	The ‘novel’ approaches, seemingly promising for (ultra)large datasets, are based on geometric insights disguised in the shapes of hulls and spheres (balls)
	SVM - Geometric Approaches
	Slide Number 62
	SVMs as the Reduced Convex Hulls
	Reduced Convex Hulls
	Core i.e., Ball, Vector Machines
	Core Vector Machines
	Ball Vector Machines
	Enclosing Sphere Machines (ESM) Our approach
	Now only, we present results of extremely extensive comparisons of one of the most powerful & possibly the most used off-shelf SVM software LIBSVM (both L1 & L2 models) vs. the last two geometric approaches (balls and spheres) for training SVMs,��in a very strict��DOUBLE (NESTED) k-fold CROSS VALIDATION i.e. RESAMPLING experiment
	Remind!���k-fold CROSS VALIDATION is for MODEL (i.e., its HYPERPARAMETERS) SELECTION��while a��DOUBLE (NESTED) k-fold CROSS VALIDATION i.e., RESAMPLING is for MODELS COMPARISONS
	Comparisons results for datasets below
	Learning time - S & M data sets
	Accuracy - S & M data sets
	Ratio of number of SVs� S & M data sets
	Learning time – M & L & UL data sets
	Accuracy - M & L & UL data sets
	Ratio of number of SVs� M & L & UL data sets
	Multithreading by OpenMP*�A speedup for 12 threads
	Thus, sphere SVMs seem to offer both a capacity to handle, and significant accelerations for, both HARD (not necessarily UL) and ULTRALARGE datasets (over 1 mil samples).��The very next (we believe a feasible) step may well be implementing spheres on GP GPUs speeding them even more
	Slide Number 80
	Some final thoughts on the topic of learning from MASSIVE datasets
	CONCLUSIONS
	Thanks for both being patient �and having stamina
	Slide Number 84
	Slide Number 85
	Slide Number 86

