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Empezaremos el trabajo pronto!? 

 Uskoro po~iwemo!?!   

    We’ll start soon !?! 
 

我們將很快開始     

  Zaczniemy wkrótce !?!   

Mы скоро начнется !?! Nous allons bientôt commencer  

  हम जल्द ह� शुरू कर�  سنبدأ قريبا    
Wir werden bald beginnen !?! 

Inizieremo presto 
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From Identification to                          
Data Mining / Machine Learning 

Handling Massive Datasets 

Learning Algorithms and  

Applications Laboratory (LAAL) 

λα 
αλ 
 

Presenter: Vojislav Kecman 

λα 
αλ 
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Motivations for the first part of the talk 
• There is no good control algorithm without knowing/having  the 

system’s (i.e., plant’s) dynamic model.  
 

• System’s model can be derived in three ways: 
 

A. Applying the first principles of conservation of M, E & M  
B. Building a model by using the empirical data i.e. measurements – 

NNs & SVMs 
C. Embedding human knowledge into the (so-called) fuzzy models 
 

• Here, we’ll say few words about a B part which is in control community 
a.k.a. IDENTIFICATION, and which is the predecessor of DM / ML.  
 

• The rest of the presentation will be devoted to the following facts: 
 

• contemporary engineers and scientists are surrounded by, in fact, they are 
immersed in an ocean of all kinds of massive data (a.k.a. measureme-
nts, images, patterns, sounds, samples, web pages, tunes, x-rays or ct 
images, etc.)  

 
• Humans can't handle usually ultra-large data sets collected today but,  

 

 we must develop algorithms able to learn from such datasets and to 
mine them efficiently 
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CONTENTS 

• Identification = The Origin of Linear and NL 
Models in Data Mining i.e. Machine Learning  
 
 
 
 
 

• NNs & SVMs equal or not? 
– Neural Networks (NNs)   = Nonlinear Identification 
– Support Vector Machines (SVMs)   = Nonlinear Identification 

 
 
 
 
 

• Handling Massive (Ultra-Large) Datasets by 
SVMs (NNs can’t do that efficiently) 

PART 1: 

PART 2: 

PART 3: 
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The Extremely Confusing Terminology* 
     Support Vector Machines | Neural Networks | Prediction error method | 

Partial Least Squares | Regularization | Bayes method | Maximum 
Likelihood | Akaike's Criterion | The Frisch Scheme | MDL | Errors In 
Variables | MOESP | Realization Theory | Closed Loop Identification | 
Cramer - Rao | Identification for Control | N4SID | Experiment Design | 
Fisher Information | Local Linear Models | Kullback-Liebler Distance | 
Maximum Entropy | Subspace Methods | Kriging vs Gaussian Processes 
| Ho-Kalman | Self Organizing maps | Quinlan's algorithm | Local 
Polynomial Models | Direct Weight Optimization | PCA | Canonical 
Correlations | RKHS | Cross Validation | Co-integration | GARCH | Box-
Jenkins | Output Error | Total Least Squares | ARMAX | Time Series | 
ARX | Nearest neighbors | Vector Quantization | VC-dimension | 
Rademacher averages | Manifold Learning | Local Linear Embedding | 
Linear Parameter Varying Models | Kernel smoothing | Mercer's 
Conditions | The Kernel trick | ETFE | Blackman--Tukey | GMDH | 
Wavelet Transform | Regression Trees | Yule-Walker equations | 
Inductive Logic Programming | Machine Learning | Perceptron | 
Backpropagation | Threshold Logic | LS-SVM | Generalization | CCA | M-
estimator | Boosting | Additive Trees | MART | MARS | | EM algorithm | 
MCMC | Particle Filters | PRIM | BIC | Innovations form | AdaBoost | ICA 
| LDA | Bootstrap | Separating Hyperplanes | Shrinkage | Factor Analysis   

     | ANOVA | Multivariate Analysis | Missing Data | Density Estimation | 
PEM          *L Ljung’s slide 
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Identification 
• Historically – the very first control 

systems were the STABILIZATION 
control systems 

• This means, they had to 
stabilize a system at some 
given operating point 

• Hence, no matter whether the 
true plant was nonlinear or not its 
operation around a fixed set 
point had been well described by 
linear model 
 

• This is the origin of a linear 
system identification - still very 
powerful, popular and useful set 
of model building techniques 
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or,  
 

which is the plane in 3D space. 

Identification is the task of 
finding   

Linear systems can be described by linear differential equations,  

 

 

which can be represented by transfer functions, and which are discretized and represented by difference 
equations today 

Identification 
'y ay u+ = '' 'y ay by u+ + =

( )

( )

( )

1
1

1 1

1 1 1 1

1
1

1 (1 )

1 2 2
2

k k
k k k k k

k k k k k k k

k k k k k k k k

y Tuy y ay u y
T aT

y y ay u y aT y Tu
T

y y ay u y aTy y Tu
T

−
−

+ +

+ − + −

+
− + = → =

+

− + = → = − +

− + = → = − + +

( ) ( )

( ) ( )

( ) ( )

1 1 1 12

2 2
1

1

2 2
1 2 1

1 2
2

or

2 0.5 1
1 0.5

or

2 0.5 1
1 0.5

k k k k k k k

k k k
k

k k k
k

ay y y y y by u
T T

bT y aT y T u
y

aT

bT y aT y T u
y

aT

+ − + −

−
+

− − −

− + + − + =

− + − +
=

+

− + − +
=

+

1 1 2k k ky y u−= Θ +Θ

a sΘ−



8/83 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

Discrete step k

O
ut

pu
t y

First order system response y

0 200 400 600 800 1000 1200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Discrete step k

In
pu

t u

PRB Input u

Identification 

For the purpose of an 
UNDERSTANDING an 
identification and its both 
geometry and algebra, these two 
pictures are not of great interest. 

However, the one on the next 
slide is!  

Time response of the 1st 
order system to the pseudo 
random binary (PRB) input 
signal 
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Identification 
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Note, this is a noiseless case with a PRB input! 
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Identification 
If there is a noise, and one uses a PR input with variable 

amplitude the identification task for the first order system is 
shown as below  

uk-1 yk-1 

yk 

uk-1 

yk-1 

yk 



11/83 

Identification 
It is the same procedure for higher order systems but we can’t visualize it. 

For them, everything happens on/around the hyperplane. 

The identification task is same: from the points given on (i.e., similar to) the 
previous slide obtain the parameters of the hyperplane. 

In other words, one should solve the following overdetermined system of  
 

equation                         and the solution is obvious 
 

In the previous 1st order system the first 9 values of the matrix X and vector y 
are obtained from  

the graph on page 8, 

and they are given as: 

Θ̂ =X y yXXXθ TT 1)(ˆ −=

Same equations are valid for any order system with/without the noise only 
difference being that X matrix has more columns of   y-s   and   u-s ! 
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NL Identification 
While linear control and linear identification are still very useful techniques 

many contemporary control system are inherently NONLINEAR 

Same as in linear systems, models can’t always be obtained by using the first 
principles but, again, by using the sets of input and output measurements i.e., by 

NL  IDENTIFICATION 
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So, what’s different in respect to the linear identification? 
 

Well, conceptually not too much, except that it is 
harder because we often have neither an idea 

about the type of nonlinear dependencies nor 
the knowledge about the order of the system 

present in the plant / system. 
 

The remedy is - use the universal approximators for 
modeling the nonlinearities. There are many at the 
disposal today. It hadn’t been that way in the past! 

NL Identification 
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NL Identification 
Example 1: Consider the following NONLINEAR dynamic system. It is of the 

first order again, just for the sake of a visualization. 

yk+1 = sin(yk)*sin(uk) - uk /π  

The red dots present the values of yk+1 for a given pairs of uk and yk. Historically, 
Neural Networks (NNs) were the very first tools used for modeling NL dynamics! 
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NL Identification 
Example 2: Consider another NONLINEAR 1st order dynamic system. 

y(k + 1) = 0.1y(k) + tan( u(k) )  
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NN surface - colored 

Plant surface - light 

Easy 
case : 
one to 

one 
mapping! 
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NL Identification 

However, things can become a little more complicated in NL case, 

uk 

yk 
yk+1 

if there is one to 
many mapping! 

For higher order 
NL dependencies 
this is the worst 
case scenario 
because it may be 
hard to get it right 
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or             y(k) 
 ( ) y k 

 ( ) y k n − 
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NL Identification 
How is it done? 

Note, the scheme is same for the linear identification, a 
difference being that instead of NN one has a linear neuron. 
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NL Identification 
had started by using NNs with sigmoidal activation functions a.k.a. 
multilayer perceptron because they had been the very first popular 

universal approximators being able to approximate any NL function to any 
desired degree of accuracy. 

wj j j jj

J
ϕ ( , , )x c Σ

=∑ 1o= F(x) =  

NN is a sum of weighted 
basis functions, and so are 
many other models today 
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• Here, we won’t go into a broad field of NN 
based control (there was plenty of control at 
this meeting anyway) 

• We’ll stay in the field of NL identification a.k.a 
data mining a.k.a machine learning with an 
aim to clarify, and to point to, an ‘equality’ of 
the two most popular NL data modeling tools - 
NNs & SVMs   

• Note, SVM is also a model in the form of a 
sum of weighted basis functions 

 Let’s compare two modeling tools NNs & SVMs 

NL Identification 
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If you may still have some interests in NNs 
and/or SVMs based control check literature, 

there are plenty of sources. 
 
 

If you want to see how I was doing it ~15 years ago 
check it in my book published by The MIT Press: 

 

http://www.support-vector.ws 
 
 

or search after adaptive backthrough  
(ABC) control for some of my papers. 

http://www.support-vector.ws/�
http://www.support-vector.ws/�
http://www.support-vector.ws/�
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The two universal approximators i.e., identifiers 
i.e., learning machines are   

SVMs and NNs 
(however remember, there are other models too). 

 

WHAT are DIFFERENCES and SIMILARITIES? 

WHATCH CAREFULLY NOW !!! 

NL Identification = NNs & SVMs 
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o = F(x) 
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This is a Neural Network, 
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and, this is a Support Vector Machine. 

AND AGAIN !!! 
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This is a Neural Network, 

 

o = F(x) 
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and, this is a Support Vector Machine. 

There is no difference 

in the structure! 

However, there is an important 
difference in LEARNING. 

 

o = F(x) 
 
 

x1 
 
 
 
xi 
 
 
 
xn  

V w 

vji wj 

+1 

y1 
 
 
 y2 
 
 
 yj 
 
 
 yj+1 
 
 
 yJ 

wj j j jj

J
ϕ ( , , )x c Σ

=∑ 1F(x) =  



26/83 

Where then the 
  

BASIC DIFFERENCES between  
 

NNs and SVMs 
 

(in fact, among all the other various ML models) 
 

are coming from?  
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Well ! There are two fundamental 
issues in any data modeling  

• They are the questions of: 
 

• the FORM 
 

  and 
 

• the NORM 
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The NORM 
• covers – the type of the cost, i.e., merit, i.e., 

loss, i.e., fitness, i.e., objective, function which 
is optimized over the parameters of interest 
(here, we call them weights).  

The FORM 
• covers – the type of the mathematical structure/ 

model and in particular the type of the kernel 
(SVM), i.e., activation (NN), i.e., basis (RBF), 
i.e., membership (FL) function used. 
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• ‘All’ our models in ML are ‘same’ i.e., they are the  
 
SUM OF THE WEIGHTED BASIS FUNCTIONS 

The FORM 

1
( ) ( , , )J

j j j jj
o f w ϕ

=
= = Σ∑x x c

Hence,  

ONE MODEL = MANY MODELS 
Polynomial approximations, Fourier expansions, NN, SVMs, wavelets, JPEG, 
MPEG, Fuzzy Logic models, …, many others … they ALL are   

Hyperparameters to be found during 
the learning (training) phase 
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• In essence, we use primarily (only) two NORMs (cost 
functions) in ML which are the 
 

• MINIMIZATION of the SUM OF ERROR SQUARES in the 
OUTPUT space (linear standard classifier/regressor, FFT, 
JPEG, MPEG, MLP NN and RBF NN) – L2 norm 

 
  and the (most recently introduced) the 
 
• MAXIMIZATION of the MARGIN in the INPUT space 

expressed as a MINIMIZATION of the SUM OF 
WEIGHTS SQUARES (SVMs) 
 

(a variant of both may be the L1 norm or some composite norm) 

The NORM 
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The Norms (Loss Functions) of NNs and SVMs 
 

    A classic multilayer perceptron (MLP), 
  FFT, polynomial models 

 
 

       Regularization (RBF) NN 

 
 

                         Support Vector Machines 

 

 

In the last expression the SRM principle uses the VC dimension h 
(defining model capacity) as a controlling parameter for minimizing E, 


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and, h is controlled by the norm of the weight vector 
w. The smaller the norm, The bigger the margin 

Thus, the learning algorithm for SVMs is given as the 
classic QP problem: 

       minimize 
      J = wT w = || w ||2 

 

      subject to constraints 
       yi[wT xi + b] ≥ 1 

Margin 

maximization! 

Correct 

classification! 

Remember this inequality constraints, they IMPOSE the 
SPARSENESS ONTO THE SOLUTION, and they make SVMs 
suitable tool for handling MASSIVE (ULTRA-LARGE) datasets 
(see slide 45)  
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There are two basic, constructive approaches to the  
minimization of the right hand side of previous equations*  

 
- Choose an appropriate structure (order of polynomials, number  
  of HL neurons, number of rules in the FL model) and, keeping the  
  confidence interval fixed in this way, minimize the training error  
  (i.e., empirical risk), or 
 
- keep the value of the training error fixed (equal to zero or equal to  
  some acceptable level) and minimize the confidence interval. 
 

Classic NNs implement the first approach (or, some of its 
sophisticated variants) and SVMs implement the second strategy.  

 
 

In both cases the resulting model should resolve the trade-off between 
under-fitting and over-fitting the training data.  

 
 

The final model structure (order) should ideally 
 

match the learning machines capacity with training data complexity.  
* (Vapnik, 1995 and 1998) 



34/83 

Can we say that NNs and SVMs are equal? 
 

NO and YES! 
 

NO - because the NORMS (and, thus, the 
learning algorithms i.e., the final 

parameters of the models) are different.  
 

YES - because they are the very same 
mathematical structure which is  

 

a SUM OF WEIGHTED BASIS (ACTIVATION, 
KERNEL) FUNCTIONS 
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Few remarks about properties of SVMs 
and NNs are in order now: 

• One can expect SVMs will perform better    
 for sparse data, 

• SVMs algorithms can handle ultra-large 
 datasets (millions of samples), while 
 NNs’ ones can’t, 

• For smaller and dense data corrupted by    
 normal noise NNs can be competitive 
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We have just ended the second part of 
this session and now comes the last 
part about handling massive i.e., 

ultra-large datasets. 
 

Some of you are already facing big 
datasets, and some will meet them soon. 

 

Our argument here is that, as of 
today, only SVMs are able to handle 

massive datasets efficiently. 
Why, discussing massive datasets? 
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Industrial Demands Are Growing 
• Data mining in large plants/process data bases 

Stora Enso Borlänge, Sweden, 75000 control signals, 15000 control loops, 
Sampling at 1Hz would produce huuuuuge/massive datasets (from L. Ljung), in 
which you want to find fault behaviour, outliers, wrong signals, new 
disturbancies, novelties, something unexpected, ....   .  

 

For all these tasks most often CLASSIFICATION algorithms will be the tool! 
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Why are we talking about the 
Classification Algorithms  

at  
the Resilient Control Systems 

Conference? 

Well, the answer is on the next slide! 
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Resiliency may rely on the timely recognition of the 
FAULTS i.e, on the Anomaly, i.e., Novelty, Detection  

Survey on the 

FAULT DIAGNOSIS METHODS* 

* From R. Isermann’s book – Fault-Diagnosis Systems 
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43 more slides to go! 

I am enjoying it    till now, 
indeed !  

What about you ? 
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1st, let’s clarify the 3rd part: 
What is an ultra-large dataset? 

• A concept of size is continuously changing with 
both data producing capacities and advances in 
hardware, but let’s define it (for today only): 
 

• SMALL   <   ~   10,000 samples 
• MEDIUM  <   ~ 100,000 samples 
• LARGE     up to  ~ 1million  samples 
• ULTRA-LARGE = ‘LARGER’ than LARGE  

However, remind that the training doesn’t depend upon the size of 
data only. We’ll see that some medium datasets are much tougher 

nuts to crack than some ultra-large samples collections!!! 
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We now depart from dynamic 
systems, identification and control 

 

and 
  

talk about any large datasets mining 
 

where we are typically given the data 
(samples, examples, measurements, 

observations, records, …) in the 
following form 
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General data, having N samples, is given as: 

11 12 1 1

21 21 2 2

1 2

1
1

, , or

1

n

n
Class Regress

N N Nn N

x x x y
x x x y

x x x y

+    
    −    = = =
    
    −    

X Y Y





    



1st data pair 

Nth data pair 

In control and identification  X entries are delayed inputs x(k-i) 
and outputs y(k-i) while Y entries are y(k). 
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LARGE DATA SETS! 
 

How to handle them? 
What algorithm is suitable? 
What hardware i.e. software 
solution fits them the best? 
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As of today, SVMs only can successfully deal 
with (ULTRA)LARGE Datasets. SVMs only! 

• How comes? What about the other ML models? Why 
is it this way?  
 

• Well, it follows from the SVMs’ learning algorithm 
which is solving the QP problem with N inequality 
constraints and 1 equality constraint, where the 
former (see slide 32) 
 

• IMPOSE the SPARSENESS ONTO THE SOLUTION! 
 

• This then, in turn, makes the training phase 
feasible and expresses the model in terms of a 
small number of the so-called Support Vectors! 

Sorry for such a bold claim, but the explanations below may help to understand it! 
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There are few possibilities to learn 
from ultra-large data sets by SVMs 
 

* parallelize the existing QP solvers 
 

** implement ‘novel’ parallel QP solvers 
 

*** use GPUs i.e., manycore machines  
 

****change the SVMs algorithm through   
      a ‘novel’ geometry based insights =  
      hulls and spheres (balls) approaches 
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Classic Parallelization 
• There was a series of various attempts to 

parallelize SVMs algorithms on super-
computers, clusters and grid machines starting 
from ~ 2003 and lasting till today. 
 

• Table of examples is on the next 2 slides 
 -  the NEC Labs’ patented cascade SVM  

 parallelization approach (Graf et al & 
 Vapnik, 2006) is not forgotten in the next 
 table - check it at NIPS 2004. It belongs to 
 the item *parallelize the existing QP solvers, 
 from previous slide) 
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Author 

 
Processor 

 
Algorithm 

 

Training 
Speed up 

 

Testing 
Speed up 

2003, Zanni  
MPI   

(Cray T3E, 32 
processor) 

VPDT 
variable projection 

decomposition 
technique 

1.8 -6.1 
(2 - 16 processor) N/A 

2005, Serafini and 
Zanni Cluster 

PGPDT 
A Parallel Gradient 
Projection-based  
Decomposition 
Technique for  

Support Vector 
Machines 

5.2 
(8 processor / single 

processor) 
N/A 

2006, Cao et al. 
MPI   

(Cluster of multiple 
CPUs) 

 PSMO  
Parallel SMO 

93 (over SVM and 
LIBSVM) 

(32 Processor)  
N/A 

2006, Serafini and 
Zanni Cluster 

PGPDT 
A Parallel Gradient 
Projection-based  
Decomposition 
Technique for  

Support Vector 
Machines 

7.3 MNIST 
12.8 Cover test 

(16 processor / single 
processor) 

2 - 25 KDDCUP 
(24 - 32 processor / 
single processor) 

 

N/A 

2007, Chu et al. Cluster (Map-
Reduce) SMO 1.6 - 1.96 

(2 core/1 core) N/A 

2007, Dominik 
Burgger  

Kepler Cluster  
(Every node has 

two cores) 
(MPI) 

πSVM  
Extension of 

LIBSVM 

3.8 - 16 
(LIBSVM) N/A 
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Author Processor Algorithm Training 
Speed up 

Testing 
Speed up 

2008 , Thanh-Nghi 
Do et al. 

Nvidia GeForce 
8800 GTX 

 LS-SVM 
Extended Least 
Squares SVM 

47 - 100 
(over LIBSVM on 

CPU) 
N/A 

2008, Catanzaro et 
al. 

Nvidia GeForce 
8800 GTX 

GPU, single 
precision 

SMO 

9-35 (GPU Adaptive 
over LIBSVM) 

81-135 (GPU over 
LIBSVM) 

5-24 (GPU over 
CPU) 

N/A 

2009, Carpenter NVIDIA GTX 260 
GPU 

SMO (cuSVM) 
mixed precision 

algorithm 

17-32 (over 
LIBSVM) 

22-172 (normal 
CPU) 

2009, Harvey 2 GPU GPUSVM 89 - 263 
(LIBSVM) N/A 

2009, Meligy  Grid Based  
(C and MPI) 

DSVM 
(Distributed SVM) 

PSVM 
(parallel of Support 

Vector Sector 
Machine) 

not implemented N/A 

2009, Woodsend  
Hybrid 

MPI/OpenMP 
Cluster (quad-core) 

OOPS  
(Object-Oriented 
Parallel Solver) 

2.2 - 2066 (Milde) 
43 - 125 (PSVM) 

94 - 206 (PGPDT) 
N/A 

2010, Lopez et al.  NVIDIA Tesla C1060 
GeForce 8800 GT 

P2SMO 
Parallel-Parallel 

SMO 

3 - 57 (Training) 
3 - 112 

(Classification) 
N/A 
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SVMs code on GPUs  
developed at VCU 

Tesla card S1060 (first series) 

8 Tesla GPUs in 4U server 
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GPUSVM Experimental Results for Benchmark Datasets  

 
• Performance comparisons between LIBSVM and GPUSVM            

on both accuracy and speed will be shown on next 8 slides. 
 
• Accuracy comparison: 

– Small datasets: Accuracies are shown for training sets. 
– Medium datasets: Accuracies are shown for both training and 

testing sets. 
– Large datasets: Accuracies are shown for testing sets. 
 

 
 

• Speed comparison: 
– Small datasets: The training time is too trivial to be shown. 
– Medium/Large datasets: The training /testing time are shown for 

standard LIBSVM ( using Xeon 1-core), OpenMP enabled 
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GPUSVM Benchmark Datasets for 
Hyperparameters C and  

Scale Dataset # of training 
data 

# of testing 
data 

# of 
features 

# of 
classes 

C 

small 

glass 214 N/A 9 6 512 2 
iris 150 N/A 4 3 16 0.5 

wine 178 N/A 13 3 1 0.25 
heart 270 N/A 13 2 0.5 0.0625 
sonar 208 N/A 60 2 4 0.125 

breast-
cancer 

683 N/A 10 2 0.25 0.125 

medium 

adult 32,561 16,281 123 2 1 0.0625 
usps 7,291 2,007 256 10 128 0.015625 
letter 15,000 5,000 16 26 16 8 

shuttle 43,500 14,500 9 7 1 1 
web 49,749 14,951 300 2 64 8 

mnist 60,000 10,000 780 10 16 0.003096 

large 
usps-ext 266,079 75,383 675 2 1 0.03125 
covtype 500,000 81,012 54 7 1 1 
face-ext 489,410 24,045 361 2 0.001 1 

γ
γ
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GPUSVM & LIBSVM Accuracy Performance Comparisons 

Dataset SVM Training 
accuracy 

# of 
SVs 

glass 
LIBSVM 98.5981% 133 

GPUSVM 98.1308% 144 

iris 
LIBSVM 98% 25 

GPUSVM 98% 27 

wine 
LIBSVM 99.4382% 68 

GPUSVM 99.4383% 75 

heart 
LIBSVM 85.1852% 146 

GPUSVM 85.1852% 146 

sonar 
LIBSVM 100% 150 

GPUSVM 100% 150 

breast-
cancer 

LIBSVM 97.2182% 91 

GPUSVM 97.2182% 91 

Dataset SVM Training 
accuracy 

Testing 
accuracy 

# of 
SVs 

adult 
LIBSVM 85.7928% 85.0132% 11647 

GPUSVM 85.7928% 85.0193% 11587 

usps 
LIBSVM 99.9863% 95.6153% 1785 

GPUSVM 99.9863% 95.715% 1923 

letter 
LIBSVM 100% 96.82% 10726 

GPUSVM 99.8467% 97.38% 11936 

shuttle 
LIBSVM 99.5149% 99.6069% 3109 

GPUSVM 99.4736% 99.5655% 3667 

web 
LIBSVM 99.4553% 99.4515% 35231 

GPUSVM 99.4553% 99.4515% 35220 

mnist 
LIBSVM 99.5917% 98.03% 9738 

GPUSVM 99.4617% 98.27% 12919 

Small datasets Medium datasets 
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GPUSVM &LIBSVM Accuracy Performance Comparisons 

Dataset SVM Testing accuracy # of SVs 

usps-ext 
266,079 

LIBSVM 99.2332% 39570 

GPUSVM 99.2332% 38598 

Covtype 
500,000 

LIBSVM 80.5028% 246444 

GPUSVM 80.3362% 267373 

face-ext 
489,410 

LIBSVM 98.037% 52488 

GPUSVM 98.037% 34992 

Large datasets 
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GPUSVM & LIBSVM Speed Performance Comparisons 

Dataset SVM Processor Training time Speedup Testing time Speedup 

Adult 
32,561 

LIBSVM 
Xeon 1-core 60.634s 1x 20.273s 1x 

Xeon 12-core 8.998s 6.7386x 2.216s 9.1485x 

GPUSVM Tesla C2070 7.636s 7.9405x 0.649s 31.2373x 

Usps 
7,291 

LIBSVM 
Xeon 1-core 4.901s 1x 2.113s 1x 

Xeon 12-core 1.331s 3.6822x 0.446s 4.7377x 

GPUSVM Tesla C2070 2.158s 2.2711x 0.081s 26.0864x 

Letter 
15,000 

LIBSVM 
Xeon 1-core 37.768s 1x 4.666s 1x 

Xeon 12-core 11.902s 3.1712x 1.88s 2.4819x 

GPUSVM Tesla C2070 10.554s 3.5785x 0.445s 10.4854x 

Shuttle 
43.500 

LIBSVM 
Xeon 1-core 9.379s 1x 2.402s 1x 

Xeon 12-core 2.047s 4.5818x 0.642s 3.7414x 

GPUSVM Tesla C2070 2.238s 4.1908x 0.526s 4.5665x 

Web 
49,749 

LIBSVM 
Xeon 1-core 1450.933s 1x 59.278s 1x 

Xeon 12-core 199.784s 7.2625x 6.819s 8.6931x 

GPUSVM Tesla C2070 71.291s 20.3523x 1.217s 48.7083x 

Mnist 
60,000 

LIBSVM 
Xeon 1-core 256.579s 1x 86.559s 1x 

Xeon 12-core 64.04s 4.0065x 10.183s 8.5003x 

GPUSVM Tesla C2070 39.552s 6.4871x 1.124s 77.0098x 

Medium datasets 
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GPUSVM & LIBSVM Speed Performance Comparisons 

Dataset SVM Processor Training time Speedup Testing time Speedup 

usps-ext 
266,079 

LIBSVM 
Xeon 1-core 1511.9m 1x 190.7m 1x 

Xeon 12-core 66.4m 22.8x 8.4m 22.7x 

GPUSVM TeslaC2070 8.4m 180x 0.5m 381.4x 

Covtype 
500,000 

LIBSVM 
Xeon 1-core 1347.7m 1x 198m 1x 

Xeon 12-core 59m 22.84x 8.7m 22.76x 

GPUSVM TeslaC2070 19.4m 69.5x 0.7m 282.9x 

face-ext 
489,410 

LIBSVM 
Xeon 1-core 6522.8m 1x 195m 1x 

Xeon 12-core 286.5m 22.77x 8.5m 22.9x 

GPUSVM TeslaC2070 5.3m 1230.7x 0.3m 650x 

Large datasets 
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Graph for training time comparisons 
between GPUSVM and LIBSVM 

Large datasets 
Note the logarithmic scale here. Thus, we are talking about the ORDER OF MAGNITUDES SPEED UP. 
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GPUSVM & LIBSVM Performance Comparison Summary  

• Accuracy performance comparisons: 
– GPUSVM is as accurate as LIBSVM. Both use same working 

set technique (SMO) for solving QP problems. 
– GPUSVM uses single precision floating point and LIBSVM uses 

double precision floating point. (This causes the slight difference 
between the total number of support vectors acquired through 
the learning phase and their corresponding alpha values. No 
effects on the accuracy whatsoever!)    

– GPUSVM uses OvA for multiclass problems while LIBSVM uses 
OvO. This also causes a tiny accuracy performance differences. 
 

• Speed performance comparisons: 
– LIBSVM can be accelerated by enabling the built-in OpenMP 

feature which utilizes the full power of multi-core CPU. 
– GPUSVM has close performance on medium datasets 

compared to LIBSVM with OpenMP in training phase. However, 
GPUSVM is always faster than OpenMP enabled LIBSVM in 
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Now, let’s move from the 
accelerations based 

primarily on hardware to the 
speeding up by a ‘new’, 

geometry inspired, 
algorithm(s) i.e., software 
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The ‘novel’ approaches, 
seemingly promising for 
(ultra)large datasets, are 

based on geometric 
insights disguised in the 

shapes of hulls and 
spheres (balls) 



 Convex Hulls 
 Core (Ball) Vector Machines 
 Sphere Vector Machines 

 

We’ve played with hulls, 
and we abandoned them for 

now, but the basic idea is  

SVM - Geometric Approaches 
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21 more slides to go! 

I am still enjoying it     ! 
  

 I hope, you’re having fun too 



SVMs as the Reduced Convex Hulls 

-find two closest points belonging to the       
 two Convex Hulls 



Reduced Convex Hulls 
•Can be solved using existing algorithms: 

– Closest Point Problem 
• Gilbert's algorithm 

– Nearest Point Problem 
•Mitchell-Dem'yanov-Malozemov 

• Schlesinger-Kozinec 

●Non-separable problems can be solved using 
Reduced Convex Hulls 

 

●Usually slower than SMO implementations 
          and thus put aside for now 
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Core i.e., Ball, Vector Machines 

•Solving minimal enclosing ball problem 

 
•is equivalent to solving a modified L2 SVM 
 
 

•in a feature space defined by kernel 
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Core Vector Machines 
At each iteration: 
- one violating point is added to the core-set 
- Minimum Enclosing Ball problem is solved for all points       
belonging to the core-set (using SMO algorithm) 
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Ball Vector Machines 
At each iteration: 
- instead of solving entire QP problem just one update is      
        performed - ball is shifted towards the max violating point 
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Enclosing Sphere Machines (ESM)         
Our approach 

At each iteration two vectors are found: 
- one that violates “ball enclosing” conditions 
- one that violates KKT conditions: 
 
 
 
and ball is shifted along the line joining these two vectors  
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Now only, we present results of 
extremely extensive comparisons of 
one of the most powerful & possibly the 

most used off-shelf SVM software 
LIBSVM (both L1 & L2 models) vs. the 
last two geometric approaches (balls 

and spheres) for training SVMs, 
 

in a very strict 
 

DOUBLE (NESTED) k-fold CROSS 
VALIDATION i.e. RESAMPLING 

experiment 
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Remind! 
 
 

k-fold CROSS VALIDATION is for 
MODEL (i.e., its HYPERPARAMETERS) 

SELECTION 
 

while a 
 

DOUBLE (NESTED) k-fold CROSS 
VALIDATION i.e., RESAMPLING is for 

MODELS COMPARISONS  
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Comparisons results for datasets below 

Data set Number of 
classes 

Number of 
attributes 

Number of 
samples 

optdigits 10 64 5,620 
satimage 6 36 6,435 
usps 10 256 9,298 
pendigits 10 16 10,992 
reuters 2 8,315 11,069 
letter 26 16 20,000 
adult 2 123 48,842 
w3a 2 300 49,749 
shuttle 7 7 58,000 
web 2 300 64,700 
ijcnn1 2 22 141,691 
intrusion 2 127 5,209,460 

 

S 

 

 

 

M 

 

 
L 

UL 
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optidigits satimage usps pendigits reuters letter
0

50000

100000

150000

200000

250000

300000

350000

SphereVM
BallVM
L2 SVM
L1SVM

Learning time - S & M data sets 

5,620 6,435 9,298 10,992 11,069 20,000 



73/83 

optidigits satimage usps pendigits reuters letter
0.88

0.9

0.92

0.94

0.96

0.98

1

SphereVM
BallVM
L2 SVM
L1SVM

Accuracy - S & M data sets 

5,620 6,435 9,298 10,992 11,069 20,000 
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optidigits satimage usps pendigits reuters letter
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SphereVM
BallVM
L2 SVM
L1SVM

Ratio of number of SVs 
 S & M data sets 

5,620 6,435 9,298 10,992 11,069 20,000 9,298 20,000 9,298 
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adult w3a shuttle web ijcnn1 intrusion
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

SphereVM
BallVM
L2 SVM
L1SVM

Learning time – M & L & UL data sets 

48,842 49,749 58,000 64,700 141,691 5,209,460 

Notice that both LIBSVMs were not able to finish the learning here. L1 LIBSVM needed 60h/1 iteration only 

5 M sec 

4 M sec 

3 M sec 

2 M sec 

1 M sec 

52 days is here ~ 2 MONTHS which is huge for even the most patient researchers 

More than 1 MONTH is here, which is also huge for even the most patient researchers 

Compare these times 
and check our 
previous  statements! 
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adult w3a shuttle web ijcnn1 intrusion
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SphereVM
BallVM
L2 SVM
L1SVM

Accuracy - M & L & UL data sets 

48,842 49,749 58,000 64,700 141,691 5,209,460 

Notice that both LIBSVMs were not able to finish the learning here. L1 LIBSVM needed 60h/1 iteration only 
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adult w3a shuttle web ijcnn1 intrusion
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SphereVM
BallVM
L2 SVM
L1SVM

Ratio of number of SVs 
 M & L & UL data sets 

48,842 49,749 58,000 64,700 141,691 5,209,460 
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adult usps letter shuttle web mnist
0

1

2

3

4

5

6

7

8

9

SphereVM
BallVM
L2 SVM
L1SVM

Multithreading by OpenMP* 
A speedup for 12 threads 

48,842 58,000 64,700 20,000 9,298 70,000 

*  Open Multi-Processing  
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Thus, sphere SVMs seem to offer both 
a capacity to handle, and significant 
accelerations for, both HARD (not 

necessarily UL) and ULTRALARGE 
datasets (over 1 mil samples). 

 
The very next (we believe a feasible) 

step may well be implementing spheres 
on GP GPUs speeding them even more 



80/83 
2 4 6 8 10 12

0.5

1

1.5

2

2.5

3

x 10
4

Sp
ee

du
p 

R
at

io 
L 

/ N
L

Speedup Ratio   L / NL

2 4 6 8 10 12

-5

0

5

10

15

20

25

30

35

Ac
cu

ra
cy

 D
iff

er
en

ce

Accuracy Difference NL - L

Data set 

1 optdigits   
2 satimage   
3 usps          
4 pendigits  
5 reuters      
6 letter         
7 adult          
8 w3a           
9 shuttle     
10 web       11 
ijcnn1    12  
intrusion 

# of data 
1 - 3,823 
2 - 4,435 
3 - 7,291 
4 - 7,494 
5 - 7,770 
6 - 15,000 M 
7 - 32,561 M 
8 - 4,912 
9 - 43,500 M 
10 - 49,749 M 
11 - 49,990 M 
12 - 4,898,431 UL 

The Last But Not the Least                         
Always Run Linear SVM First 

Here, we run our LINEARSVM 
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Some final thoughts on the topic of learning from 
MASSIVE datasets  

• An ever-increasing number of data samples 
requires rethinking about how to approach the 
machine learning tasks 

• The very rethinking must include advances in 
both HARDWARE and ALGORITHMS 

• GPU manycore processors are the first 
obvious choice for the hardware right now 

• The next good option is to use some ideas from 
the geometry 

• Our spheres algorithm for training SVMs have 
been successfully implemented and presented 
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CONCLUSIONS 
• Linear Systems Identification Is The Origin of 

Machine Learning / Data Mining 
• NNs & SVMs Do Non-Linear (NL) Identification 
• Basic NL Modeling Tools Are Same Mathematical 

Structures. They Are The Sum of Weighted 
Basis/Activation/Kernel Functions 

• Resilient Control Systems Will Rely on Good Fault 
Detection Algorithms for Massive Datasets, Which 
Will Most Likely Be Some of Standard 
Classification Algorithms 

• As of Today, The SVMs Seem to Be The Only Tool 
Able to Handle Massive Datasets 
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Thanks for both being patient  
and having stamina  
•Q 

– U 
•E 

– S 
» T T T T T T T T T T T T T T >  

– I 
•O 

– N 
•S 
   PLEASE !!! 

Ask now, 
have 

dilemma 
later 
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F(x) =  ∑

=

N

k
kk bothorkxborkxa

1
),cos(),sin(

BUT, what if we want to 
learn the frequencies? 

!!!    NONLINEAR 
LEARNING PROBLEM   !!! 

 
o = F(x) 
 
 

V  
is prescribed 

 
 
 
 
 

w 

vji wj 

+1 

y1 
 
 
 
y2 
 
 
yj 
 
 
 
yj+1 
 
 
yJ 

x 

1 

2 

4 

n 

Classic approximation techniques in NN graphical appearance 
FOURIER SERIES 

AMPLITUDES and PHASES of sine (cosine) waves are unknown, 
but frequencies are known because 

Mr. Joseph Fourier has selected frequencies for us -> they are 
INTEGER multiplies of some pre-selected base frequency. 

And the problem is LINEAR!!! 

It is ‘same’  

with POLYNOMIALS  

w 
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Another classic approximation scheme is a  

POLYNOMIAL SERIES 

F(x)             xi    

 

 

∑
=

=
N

i
iw

0

 
o = F(x) 
 

w 

vji wj 

+1 

y1 
 
 
 
y2 
 
 
yj 
 
 
 
yj+1 
 
 
 

yJ 

x 

1 

2 

3 

4 

5 

V  
is prescribed 

 
 
 
 
 

With the prescribed 
(integer) exponents 

this is again a LINEAR 
APPROXIMATION 

SCHEME. Linear in 
terms of parameters to 
learn and not in terms 

of the resulting 
approximation 

function. F(x) is NL 
function for i > 1. 
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Environment of our 
experiments was as follows 
 

SVMs with Gaussian kernel 
Double 5x5 CV,  
8x8  hyperparameters (C, σ) 
which amounts to 
1600 runs for each dataset 
 

Runs for each dataset have 
been performed on 5 
Xeon E5520 2.3 GHz CPUs 
 

Training time is then 
summed up i.e., given as a 
single CPU time needed. 
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