
© 2012 IBM Corporation

The Importance of Realistic Quantitative
Studies of Malware Detection

Davide Canali, Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai Christodorescu, Engin Kirda

© 2012 IBM Corporation 2 Mihai Christodorescu, IBM T.J. Watson Research Center

The Malware-Detection Models of Today

 Code signatures:
– Strings or RegExps at the byte level
– Easy to evade (packing, obfuscation)
– Still the most widely used in the AV industry

 Behavioral signatures:
– Based on high-level, abstract, behavior representations
– Usually based on system calls
– Harder to evade

© 2012 IBM Corporation 3 Mihai Christodorescu, IBM T.J. Watson Research Center

Behavior-based Malware Detectors

 Different models have been considered, but:
– It's very difficult to understand when, and why, one should be preferred to another
– They all lack a solid evaluation

• Tested on very limited datasets
Often extracted in controlled environments, from one machine only
Tens of malware samples, few benign apps

 Starting to be adopted by the AV industry as well
– Very few (if any) details available

© 2012 IBM Corporation 4 Mihai Christodorescu, IBM T.J. Watson Research Center

Behavioral Detection (in Academia)

 “Static-Aware Malware Detection” - USENIX Security 03
– Model: templates based on instruction sequences where variables and symbolic

constant are used
– Generation: Manual
– Dataset: 2 templates tested on 3 malware families

 200k small benign executables (less than 1.5KB each)
– Assume it is possible to reliably disassemble the programs

 “Mining Specifications of Malicious Behavior” - FSE 07
– Model: DAG of syscalls (no parameters) generated by comparing benign and

malicious programs executions
– Generation: Automatic
– Dataset: 16 malware samples, 4 benign applications run for 1 minute each

© 2012 IBM Corporation 5 Mihai Christodorescu, IBM T.J. Watson Research Center

Behavioral Detection (in Academia)

 “Effective and Efficient Malware Detection at the End Host” - USENIX Sec 09
– Model: graph of syscalls + program slices to compute the parameter t

ransformations to infer data-flow
– Generation: Automatic
– Dataset: 563 malware samples belonging to 6 families, 5 goodware, 1 machine
– Result: 92% detection on same families, 23% otherwise (5% to 40% overhead)

 “A layered Architecture for Detecting Malicious Behaviors” - RAID 08
– Model: 3-layer graph (syscalls, similar actions, aggregate/composite effects) for 7

suspicious behaviors (e.g., download and execute, data leak, tcp proxy, ...)
– Generation: Manual
– Dataset: 7 malware, 11 goodware
– Performance: require QEMU + taint analysis + mouse/keyboard tracking

Up to 34x slowdown

© 2012 IBM Corporation 6 Mihai Christodorescu, IBM T.J. Watson Research Center

Behavioral-Based Models (AV Companies)

 Very few (if any) details available

 Often mentioned in web-pages and press releases
– Not much against evasions, but more as a “Signature-less technique to detect

unknown malware”

 Adopted (?) by all vendors...
– Sana Security SafeConnect (2005?)

• Acquired by AVG in 2009
– Symantec SONAR (2007)
– Panda TruePrevent (2007)
– NovaShield (2008)

© 2012 IBM Corporation 7 Mihai Christodorescu, IBM T.J. Watson Research Center

Does Larger Datasets Change the Shape of the Problem?

 Outline of this talk:

1. Dataset collection

2. Experiment 1: find the most accurate model

3. Experiment 2: find uniquely benign behaviors

© 2012 IBM Corporation 8 Mihai Christodorescu, IBM T.J. Watson Research Center

Datasets

© 2012 IBM Corporation 9 Mihai Christodorescu, IBM T.J. Watson Research Center

Data Collection: Malware

 A large number of malware samples are available from many different online collections:
Anubis, Malfease, Open Malware/Offensive Computing, etc.

 Malicious samples extracted from Anubis:
– 6,000 random samples of active malware
– From all existing malware categories

• Botnets
• Worms
• Trojans
• Droppers

© 2012 IBM Corporation 10 Mihai Christodorescu, IBM T.J. Watson Research Center

Data Collection: Benign Programs

 Challenging problem:
We need information about the normal execution profiles of benign programs.

 Issues:

– Privacy: we need to convince people that their private data are protected.

– Diversity: we need to collect benign data from a different sources: home machines,
lab machines, developer machines etc.

– Transparency: the logger should not have a visible performance or safety impact.

© 2012 IBM Corporation 11 Mihai Christodorescu, IBM T.J. Watson Research Center

Data Collector Infrastructure

 Local, per-host collector intercepts system calls, buffers, and communicates logs to
central repository.

 Data collected: 〈 timestamp, program, pid, ppid, system call, args, result 〉

© 2012 IBM Corporation 12 Mihai Christodorescu, IBM T.J. Watson Research Center

Local Collector

 Kernel-level module collects 79 different system calls in 5 categories:
– 25 related to files,
– 23 related to registries,
– 1 related to networking,
– 5 related to memory sections.

 User privacy is protected:
– No actual I/O buffers are logged
– Resource names are replaced with a random value:

• Pathnames outside the system path (e.g., C:\Documents and Settings),
• Registry keys below the user-root registry key (HKLM),
• IP addresses.

© 2012 IBM Corporation 13 Mihai Christodorescu, IBM T.J. Watson Research Center

Collected Data from Benign Programs

 From 10 real user machines (not under our control) for about a week:

© 2012 IBM Corporation 14 Mihai Christodorescu, IBM T.J. Watson Research Center

Normalization Datasets

 We need to eliminate any machine-specific artifacts that may introduce noise.

 1,200 additional samples from Anubis:
– Extracted from a different machine than the ones used in production
– Still from multiple malware families
– Named 'malware-test‘

 36 execution traces of benign applications:
– Executed under Anubis
– Named 'anubis-good'

© 2012 IBM Corporation 15 Mihai Christodorescu, IBM T.J. Watson Research Center

Datasets

 [malware] 6,000 malware traces from Anubis
 (training for malicious behavior)

 [goodware] 180GB of traces collected with our collector
 (training for benign behavior and testing for FP)

 [anubis-good] traces from 36 benign apps run in Anubis
 (filtering Anubis-specific artifacts)

 [mal-test] 1,200 malware traces from a different Anubis machine
 (used for testing the detection rate)

© 2012 IBM Corporation 16 Mihai Christodorescu, IBM T.J. Watson Research Center

Experiment 1: What Is the Most Accurate Malware-Detection Model?

© 2012 IBM Corporation 17 Mihai Christodorescu, IBM T.J. Watson Research Center

Goals

 MAIN GOAL:
Identify automatically the most accurate malware-detection model

 We need a benchmark for testing behavioral malware detectors:
– Development of a systematic testing technique to evaluate the quality of

behaviorbased malware detectors
– Creation of a comprehensive dataset for validating experiments
– Evidence that empirical evaluation of malware detection models is a necessary step

 Approach:
Fix a dataset, enumerate detection models, compute accuracy for each model.

© 2012 IBM Corporation 18 Mihai Christodorescu, IBM T.J. Watson Research Center

Enumerating Malware-Detection Models

 Parameters of interest:

1. Atoms – basic components of the model

2. Structure – relationships between atoms

3. Cardinality – number of atoms in a structure

4. Threshold – number of matched structures needed to trigger an alert

© 2012 IBM Corporation 19 Mihai Christodorescu, IBM T.J. Watson Research Center

Exploring the Model Space

Atom type

more abstract

less abstract

Structure

more complex

Cardinality
2 100 less complex

© 2012 IBM Corporation 20 Mihai Christodorescu, IBM T.J. Watson Research Center

Model Specification: Atoms

1. Atoms:
Represent the fundamental behavioral element that appears in a program syscall trace.

– System call: NtOpenFile, NtClose, ...
– Action: high-level operations (“read file”, …) → ReadFile, LoadLibrary, ...
– With and without parameters

– Limited to what can be collected efficiently at runtime

• No instruction-level tracking
• No data-flow / taint information

© 2012 IBM Corporation 21 Mihai Christodorescu, IBM T.J. Watson Research Center

Model Specification: Structures

2. Structure:
Describes how the atoms are combined together.

a) Sequences (n-grams)

b) Tuples (ordered set)

c) Bags (unordered set)

d) Recursive structures (bags of n-grams, tuples of n-grams, …)

© 2012 IBM Corporation 22 Mihai Christodorescu, IBM T.J. Watson Research Center

Model Specification: Cardinality

3. Cardinality:
Defines how many atoms are included in the structure

– Bounded by the maximum number of atoms in the dataset

– In practice, limited to the range 2-100

© 2012 IBM Corporation 23 Mihai Christodorescu, IBM T.J. Watson Research Center

Model Specification: Alert Threshold

4. Alert Threshold:
How many different signatures must be matched by a program before an alert is raised

– Signatures are matched in no particular order

© 2012 IBM Corporation 24 Mihai Christodorescu, IBM T.J. Watson Research Center

Exploring the Model Space

Atom type

more abstract

less abstract

Structure

more complex

Cardinality 2 100 less complex

4-tuples of actions with parameters

50-grams of syscalls

3-bags of 2-tuples of syscalls

© 2012 IBM Corporation 25 Mihai Christodorescu, IBM T.J. Watson Research Center

Limits of Analytical Reasoning

 It is very tempting to propose rules, based on intuitions, about the models and their
accuracy

 Example:
– Increasing the cardinality makes the signatures more specific and, therefore, less

likely to match on both the goodware and the malware datasets

– Therefore
• Going from 2-grams to 3-grams should generate fewer false positives
• Going from 3-grams to 3-bags should generate more false positives

© 2012 IBM Corporation 26 Mihai Christodorescu, IBM T.J. Watson Research Center

Wrong!

 Extending the property of a signature to the property of the models based on that
signature is a very common pitfall

– Changing a parameter does not only change the matching, but also the number of
signatures extracted!

– Against common sense, making the signatures more specific can, in some cases,
increase the FP of the entire model

Malware: (a1, a2, a3, a4, a5)
Goodware: (a3, a1, a2, a5, a4, a2, a3)
Signatures:
 2-grams: ?
 3-grams: ?
 k-bags: ?

© 2012 IBM Corporation 27 Mihai Christodorescu, IBM T.J. Watson Research Center

Wrong!

 Extending the property of a signature to the property of the models based on that
signature is a very common pitfall

– Changing a parameter does not only change the matching, but also the number of
signatures extracted!

– Against common sense, making the signatures more specific can, in some cases,
increase the FP of the entire model

Malware: (a1, a2, a3, a4, a5)
Goodware: (a3, a1, a2, a5, a4, a2, a3)
Possible combinations from malware trace:
 2-grams: [a1,a2] [a2,a3] [a3,a4] [a4,a5]
 3-grams: [a1,a2,a3] [a2,a3,a4] [a3,a4,a5]
 2-bags: {a1,a2} {a1,a3} {a1,a4} {a1,a5} {a2,a3}
 {a2,a4} {a2,a5} {a3,a4} {a3,a5} {a4,a5}

© 2012 IBM Corporation 28 Mihai Christodorescu, IBM T.J. Watson Research Center

Wrong!

 Extending the property of a signature to the property of the models based on that
signature is a very common pitfall

– Changing a parameter does not only change the matching, but also the number of
signatures extracted!

– Against common sense, making the signatures more specific can, in some cases,
increase the FP of the entire model

Malware: (a1, a2, a3, a4, a5)
Goodware: (a3, a1, a2, a5, a4, a2, a3)
Signatures:
 2-grams: [a1,a2] [a2,a3] [a3,a4] [a4,a5]
 3-grams: [a1,a2,a3] [a2,a3,a4] [a3,a4,a5]
 2-bags: {a1,a2} {a1,a3} {a1,a4} {a1,a5} {a2,a3}
 {a2,a4} {a2,a5} {a3,a4} {a3,a5} {a4,a5}

(same for 3-bags)

© 2012 IBM Corporation 29 Mihai Christodorescu, IBM T.J. Watson Research Center

Wrong!

 Extending the property of a signature to the property of the models based on that
signature is a very common pitfall

– Changing a parameter does not only change the matching, but also the number of
signatures extracted!

– Against common sense, making the signatures more specific can, in some cases,
increase the FP of the entire model

Malware: (a1, a2, a3, a4, a5)
Goodware: (a3, a1, a2, a5, a4, a2, a3)
Signatures:
 2-grams: [a3,a4] [a4,a5]
 3-grams: [a1,a2,a3] [a2,a3,a4] [a3,a4,a5]
 k-bags: none

© 2012 IBM Corporation 30 Mihai Christodorescu, IBM T.J. Watson Research Center

What Happens If We Move Along the Axes?

Atom type

more abstract

less abstract

Structure

more complex

Cardinality 2 100 less complex

© 2012 IBM Corporation 31 Mihai Christodorescu, IBM T.J. Watson Research Center

Key Indicators to Compare Models

V1 – point in which the model
provides 1% FP rate

V90 – point in which the model
provides 90% detection

VMAX – point in which the area
under the ROC curve is max

© 2012 IBM Corporation 32 Mihai Christodorescu, IBM T.J. Watson Research Center

Evaluation

 We explored all the significant points in the model space
– Some points are not significant, e.g. “n-grams of bags” would not make any sense
– We stopped increasing the cardinality once we saw the detection rate of the model

was always decreasing and VMAX dropped below 0.2

 215 different classes of detection models analyzed

 More than 220 million models generated

© 2012 IBM Corporation 33 Mihai Christodorescu, IBM T.J. Watson Research Center

General Results

 Signature extraction
– Extraction times ranged between 20 minutes and 2 days

per model (on a 4-core Xeon machine with 16GB of RAM)

 Findings:
– All models without parameters perform really bad (too generic)
– Also signatures with high cardinality perform quite bad

• But remember that we are looking for “general” signatures that can match
multiple samples

– The best model is “2-bags of 2-tuples of actions, with parameters”: 99% detection
with 0.4% FP (variance of 0.00016)

© 2012 IBM Corporation 34 Mihai Christodorescu, IBM T.J. Watson Research Center

Impact of Matching Threshold

 Both the detection rate and the false positives decrease when the matching threshold is
increased

– The drop is faster for models based on a semantically rich set of atoms (e.g., syscalls
with parameters)

cardinality=4

© 2012 IBM Corporation 35 Mihai Christodorescu, IBM T.J. Watson Research Center

Impact of Signature Cardinality

 For low values of the cardinality, adding atoms to the signatures can improve the results
– Increasing the cardinality above 10 generates signatures that over-fit the malware

training dataset, thus decreasing detection (too specific)
– Recursive structures show similar trends, but drop faster than simple ones

© 2012 IBM Corporation 36 Mihai Christodorescu, IBM T.J. Watson Research Center

Impact of Atoms and Signature Structure

 Models based on low-level atoms (syscalls)
– n-grams > bags > tuples

 Models based on high-level atoms (actions)
– tuples > bags > n-grams

 Recursive structures
– Tuples and bags provide better results than n-grams
– Best with high-level atoms (actions) with parameters

© 2012 IBM Corporation 37 Mihai Christodorescu, IBM T.J. Watson Research Center

Conclusions

 The three indicators (V1, V90, VMAX) don't always provide consistent results
– The best model depends on the optimization goal

 Empirical testing is crucial
– We showed it's easy to fall in common pitfalls when trying to generalize results
– Future works should be supported by strong evaluation

• Avoid a-priori rules!

© 2012 IBM Corporation 38 Mihai Christodorescu, IBM T.J. Watson Research Center

Experiment 2: Are Benign Programs Behaviorally Similar?

© 2012 IBM Corporation 39 Mihai Christodorescu, IBM T.J. Watson Research Center

Common Benign Behaviors

 The intuition is that benign programs in general follow certain ways in which they use the
OS resources.

 To capture normal interactions with the file system and the Windows registry, we
propose an access activity model.

© 2012 IBM Corporation 40 Mihai Christodorescu, IBM T.J. Watson Research Center

Access Activity Model

 Each resource that appears in a collected trace receives an access label L, which is a set
of access tokens:
 L = { t1, t2, …, tn }
Each token ti is a application-operation pair:
 ti = <app, op>

 Operations:
– read, write, and execute for file-system directories, and
– read and write for registry keys.

 Resources are organized into a virtual resource hierarchy (e.g., a filesystem tree):
– Generalization rules propagate labels to intermediate directories
– Container directories, temporary directories automatically identified

© 2012 IBM Corporation 41 Mihai Christodorescu, IBM T.J. Watson Research Center

A Simple Example Access Activity Model

© 2012 IBM Corporation 42 Mihai Christodorescu, IBM T.J. Watson Research Center

Malware Detection Using the Access Activity Model

 Build model from traces of benign programs:
– Need many programs, executed in diverse environments, by different users

 Then check the execution of any suspicious program against this access activity model:
– Each node in the virtual resource hierarchy is a rule specifying which programs have

what kind of access to that resource

 Any violations are indicative of malware.

 On our test set: 89% detection rate with 0% false positives.

© 2012 IBM Corporation 43 Mihai Christodorescu, IBM T.J. Watson Research Center

Conclusions

 It is crucial to have diverse and large datasets for both benign programs and malware.

 Large datasets produce qualitatively different detection results over small datasets.
– The accuracy of many classes of detection models is non-linear.

 Analysis of large traces of benign programs indicates that common benign behavior
exist (in how the OS resources are used).

References:

 AccessMiner: Using System-centric Models for Malware Protection. A. Lanzi, D.
Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda. CCS 2010.

 A Quantitative Study of Accuracy in System Call-Based Malware Detection. D. Canali, A.
Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda. ISSTA 2012.

© 2012 IBM Corporation

Questions?
The Importance of Realistic Quantitative
Studies of Malware Detection

Davide Canali, Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai Christodorescu, Engin Kirda

	The Importance of Realistic Quantitative Studies of Malware Detection
	The Malware-Detection Models of Today
	Behavior-based Malware Detectors
	Behavioral Detection (in Academia)
	Behavioral Detection (in Academia)
	Behavioral-Based Models (AV Companies)
	Does Larger Datasets Change the Shape of the Problem?
	Datasets
	Data Collection: Malware
	Data Collection: Benign Programs
	Data Collector Infrastructure
	Local Collector
	Collected Data from Benign Programs
	Normalization Datasets
	Datasets
	Experiment 1: What Is the Most Accurate Malware-Detection Model?
	Goals
	Enumerating Malware-Detection Models
	Exploring the Model Space
	Model Specification: Atoms
	Model Specification: Structures
	Model Specification: Cardinality
	Model Specification: Alert Threshold
	Exploring the Model Space
	Limits of Analytical Reasoning
	Wrong!
	Wrong!
	Wrong!
	Wrong!
	What Happens If We Move Along the Axes?
	Key Indicators to Compare Models
	Evaluation
	General Results
	Impact of Matching Threshold
	Impact of Signature Cardinality
	Impact of Atoms and Signature Structure
	Conclusions
	Experiment 2: Are Benign Programs Behaviorally Similar?
	Common Benign Behaviors
	Access Activity Model
	A Simple Example Access Activity Model
	Malware Detection Using the Access Activity Model
	Conclusions
	Questions?�The Importance of Realistic Quantitative Studies of Malware Detection

