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The Malware-Detection Models of Today 

 Code signatures: 
– Strings or RegExps at the byte level 
– Easy to evade (packing, obfuscation) 
– Still the most widely used in the AV industry 

 

 Behavioral signatures: 
– Based on high-level, abstract, behavior representations 
– Usually based on system calls 
– Harder to evade 
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Behavior-based Malware Detectors 

 Different models have been considered, but: 
– It's very difficult to understand when, and why, one should be preferred to another 
– They all lack a solid evaluation 

• Tested on very limited datasets 
Often extracted in controlled environments, from one machine only 
Tens of malware samples, few benign apps 
 

 Starting to be adopted by the AV industry as well 
– Very few (if any) details available 



© 2012 IBM Corporation 4 Mihai Christodorescu, IBM T.J. Watson Research Center 

Behavioral Detection (in Academia) 

 “Static-Aware Malware Detection”  -  USENIX Security 03 
– Model: templates based on instruction sequences where variables and symbolic 

constant are used 
– Generation: Manual 
– Dataset: 2 templates tested on 3 malware families 

               200k small benign executables (less than 1.5KB each) 
– Assume it is possible to reliably disassemble the programs 

 

 “Mining Specifications of Malicious Behavior” - FSE 07 
– Model: DAG of syscalls (no parameters) generated by comparing benign and 

malicious programs executions 
– Generation: Automatic 
– Dataset: 16 malware samples, 4 benign applications run for 1 minute each 
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Behavioral Detection (in Academia) 

 “Effective and Efficient Malware Detection at the End Host”  - USENIX Sec 09 
– Model: graph of syscalls + program slices to compute the parameter t 

ransformations to infer data-flow 
– Generation: Automatic 
– Dataset: 563 malware samples belonging to 6 families, 5 goodware, 1 machine 
– Result: 92% detection on same families, 23% otherwise  (5% to 40% overhead) 

 

 “A layered Architecture for Detecting Malicious Behaviors” - RAID 08 
– Model: 3-layer graph (syscalls, similar actions, aggregate/composite effects) for 7 

suspicious behaviors (e.g., download and execute, data leak, tcp proxy, ...) 
– Generation: Manual 
– Dataset: 7 malware, 11 goodware 
– Performance: require QEMU + taint analysis + mouse/keyboard tracking  

Up to 34x slowdown 
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Behavioral-Based Models (AV Companies) 

 Very few (if any) details available 

 Often mentioned in web-pages and press releases 
– Not much against evasions, but more as a “Signature-less technique to detect 

unknown malware” 

 Adopted (?) by all vendors... 
– Sana Security SafeConnect (2005?) 

• Acquired by AVG in 2009 
– Symantec SONAR (2007) 
– Panda TruePrevent (2007) 
– NovaShield (2008) 
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Does Larger Datasets Change the Shape of the Problem? 

 Outline of this talk: 

 
1. Dataset collection 

2. Experiment 1: find the most accurate model 

3. Experiment 2: find uniquely benign behaviors 
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Datasets 
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Data Collection: Malware 

 A large number of malware samples are available from many different online collections: 
Anubis, Malfease, Open Malware/Offensive Computing, etc. 

 

 Malicious samples extracted from Anubis: 
– 6,000 random samples of active malware 
– From all existing malware categories 

• Botnets 
• Worms 
• Trojans 
• Droppers 
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Data Collection: Benign Programs 

 Challenging problem: 
We need information about the normal execution profiles of benign programs. 

 

 Issues: 

– Privacy: we need to convince people that their private data are protected. 

– Diversity: we need to collect benign data from a different sources: home machines, 
lab machines, developer machines etc. 

– Transparency: the logger should not have a visible performance or safety impact. 
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Data Collector Infrastructure 

 Local, per-host collector intercepts system calls, buffers, and communicates logs to 
central repository. 

 

 Data collected: 〈 timestamp, program, pid, ppid, system call, args, result 〉 
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Local Collector 

 Kernel-level module collects 79 different system calls in 5 categories: 
– 25 related to files, 
– 23 related to registries, 
– 1 related to networking, 
– 5 related to memory sections. 

 

 User privacy is protected: 
– No actual I/O buffers are logged 
– Resource names are replaced with a random value: 

• Pathnames outside the system path (e.g., C:\Documents and Settings), 
• Registry keys below the user-root registry key (HKLM), 
• IP addresses. 
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Collected Data from Benign Programs 

 From 10 real user machines (not under our control) for about a week: 
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Normalization Datasets 

 We need to eliminate any machine-specific artifacts that may introduce noise. 

 

 1,200 additional samples from Anubis: 
– Extracted from a different machine than the ones used in production 
– Still from multiple malware families 
– Named 'malware-test‘ 

 

 36 execution traces of benign applications: 
– Executed under Anubis 
– Named 'anubis-good' 
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Datasets 

 [malware]  6,000 malware traces from Anubis 
    (training for malicious behavior) 

 [goodware]  180GB of traces collected with our collector 
    (training for benign behavior and testing for FP) 

 

 [anubis-good]  traces from 36 benign apps run in Anubis 
    (filtering Anubis-specific artifacts) 

 

 [mal-test]  1,200 malware traces from a different Anubis machine 
    (used for testing the detection rate) 
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Experiment 1: What Is the Most Accurate Malware-Detection Model? 
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Goals 

 MAIN GOAL: 
Identify automatically the most accurate malware-detection model 

 

 We need a benchmark for testing behavioral malware detectors: 
– Development of a systematic testing technique to evaluate the quality of 

behaviorbased malware detectors 
– Creation of a comprehensive dataset for validating experiments 
– Evidence that empirical evaluation of malware detection models is a necessary step 

 

 Approach: 
Fix a dataset, enumerate detection models, compute accuracy for each model. 
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Enumerating Malware-Detection Models 

 Parameters of interest: 

1.  Atoms – basic components of the model 

2.  Structure – relationships between atoms 

3.  Cardinality – number of atoms in a structure 

4.  Threshold – number of matched structures needed to trigger an alert 
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Exploring the Model Space 

Atom type  

more abstract  

less abstract  

Structure  

more complex 

Cardinality  
2 100 less complex  
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Model Specification: Atoms 

1. Atoms: 
Represent the fundamental behavioral element that appears in a program syscall trace. 

 
– System call: NtOpenFile, NtClose, ... 
– Action: high-level operations (“read file”, …) → ReadFile, LoadLibrary, ... 
– With and without parameters 

 
– Limited to what can be collected efficiently at runtime 

• No instruction-level tracking 
• No data-flow / taint information 
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Model Specification: Structures 

2. Structure: 
Describes how the atoms are combined together. 

a)  Sequences  (n-grams) 

b)  Tuples  (ordered set) 

c)  Bags  (unordered set) 

d)  Recursive structures (bags of n-grams, tuples of n-grams, …) 
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Model Specification: Cardinality 

3. Cardinality: 
Defines how many atoms are included in the structure 

 
– Bounded by the maximum number of atoms in the dataset 

 
– In practice, limited to the range 2-100 



© 2012 IBM Corporation 23 Mihai Christodorescu, IBM T.J. Watson Research Center 

Model Specification: Alert Threshold 

4. Alert Threshold: 
How many different signatures must be matched by a program before an alert is raised 

 
– Signatures are matched in no particular order 
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Exploring the Model Space 

Atom type  

more abstract  

less abstract  

Structure  

more complex 

Cardinality  2 100 less complex  

4-tuples of actions with parameters 

50-grams of syscalls 

3-bags of 2-tuples of syscalls 
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Limits of Analytical Reasoning 

 It is very tempting to propose rules, based on intuitions, about the models and their 
accuracy 

 Example:  
– Increasing the cardinality makes the signatures more specific and, therefore, less 

likely to match on both the goodware and the malware datasets 
 

– Therefore 
• Going from 2-grams to 3-grams should generate fewer false positives 
• Going from 3-grams to 3-bags should generate more false positives 
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Wrong! 

 Extending the property of a signature to the property of the models based on that 
signature is a very common pitfall 

– Changing a parameter does not only change the matching, but also the number of 
signatures extracted! 

– Against common sense, making the signatures more specific can, in some cases, 
increase the FP of the entire model 

Malware: (a1, a2, a3, a4, a5) 
Goodware: (a3, a1, a2, a5, a4, a2, a3) 
Signatures: 
  2-grams: ? 
  3-grams: ? 
  k-bags:   ? 
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Wrong! 

 Extending the property of a signature to the property of the models based on that 
signature is a very common pitfall 

– Changing a parameter does not only change the matching, but also the number of 
signatures extracted! 

– Against common sense, making the signatures more specific can, in some cases, 
increase the FP of the entire model 

Malware: (a1, a2, a3, a4, a5) 
Goodware: (a3, a1, a2, a5, a4, a2, a3) 
Possible combinations from malware trace: 
  2-grams: [a1,a2] [a2,a3] [a3,a4] [a4,a5] 
  3-grams: [a1,a2,a3] [a2,a3,a4] [a3,a4,a5]  
  2-bags: {a1,a2} {a1,a3} {a1,a4} {a1,a5} {a2,a3}       
   {a2,a4} {a2,a5} {a3,a4} {a3,a5} {a4,a5} 
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Wrong! 

 Extending the property of a signature to the property of the models based on that 
signature is a very common pitfall 

– Changing a parameter does not only change the matching, but also the number of 
signatures extracted! 

– Against common sense, making the signatures more specific can, in some cases, 
increase the FP of the entire model 

Malware: (a1, a2, a3, a4, a5) 
Goodware: (a3, a1, a2, a5, a4, a2, a3) 
Signatures: 
  2-grams: [a1,a2] [a2,a3] [a3,a4] [a4,a5] 
  3-grams: [a1,a2,a3] [a2,a3,a4] [a3,a4,a5]  
  2-bags:  {a1,a2} {a1,a3} {a1,a4} {a1,a5} {a2,a3}       
   {a2,a4} {a2,a5} {a3,a4} {a3,a5} {a4,a5} 

(same for 3-bags) 
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Wrong! 

 Extending the property of a signature to the property of the models based on that 
signature is a very common pitfall 

– Changing a parameter does not only change the matching, but also the number of 
signatures extracted! 

– Against common sense, making the signatures more specific can, in some cases, 
increase the FP of the entire model 

Malware: (a1, a2, a3, a4, a5) 
Goodware: (a3, a1, a2, a5, a4, a2, a3) 
Signatures: 
  2-grams: [a3,a4]  [a4,a5] 
  3-grams: [a1,a2,a3]  [a2,a3,a4]  [a3,a4,a5] 
  k-bags:    none 
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What Happens If We Move Along the Axes? 

Atom type  

more abstract  

less abstract  

Structure  

more complex 

Cardinality  2 100 less complex  
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Key Indicators to Compare Models 

V1 – point in which the model 
provides 1% FP rate 

V90 – point in which the model 
provides 90% detection 

VMAX – point in which the area 
under the ROC curve is max 
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Evaluation 

 We explored all the significant points in the model space 
– Some points are not significant, e.g. “n-grams of bags” would not make any sense 
– We stopped increasing the cardinality once we saw the detection rate of the model 

was always decreasing and VMAX dropped below 0.2 

 215 different classes of detection models analyzed 

 More than 220 million models generated 
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General Results 

 Signature extraction 
– Extraction times ranged between 20 minutes and 2 days 

per model (on a 4-core Xeon machine with 16GB of RAM) 
 
 

 Findings: 
– All models without parameters perform really bad (too generic) 
– Also signatures with high cardinality perform quite bad 

• But remember that we are looking for “general” signatures that can match 
multiple samples 

– The best model is “2-bags of 2-tuples of actions, with parameters”: 99% detection 
with 0.4% FP (variance of 0.00016) 
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Impact of Matching Threshold 

 Both the detection rate and the false positives decrease when the matching threshold is 
increased 

– The drop is faster for models based on a semantically rich set of atoms (e.g., syscalls 
with parameters) 

cardinality=4 
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Impact of Signature Cardinality 

 For low values of the cardinality, adding atoms to the signatures can improve the results 
– Increasing the cardinality above 10 generates signatures that over-fit the malware 

training dataset, thus decreasing detection (too specific) 
– Recursive structures show similar trends, but drop faster than simple ones 
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Impact of Atoms and Signature Structure 

 Models based on low-level atoms (syscalls) 
– n-grams > bags > tuples 

 Models based on high-level atoms (actions) 
– tuples > bags > n-grams   

 

 Recursive structures 
– Tuples and bags provide better results than n-grams 
– Best with high-level atoms (actions) with parameters 
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Conclusions 

 The three indicators (V1, V90, VMAX) don't always provide consistent results 
– The best model depends on the optimization goal 

 

 Empirical testing is crucial 
– We showed it's easy to fall in common pitfalls when trying to generalize results 
– Future works should be supported by strong evaluation 

• Avoid a-priori rules! 
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Experiment 2: Are Benign Programs Behaviorally Similar? 
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Common Benign Behaviors 

 The intuition is that benign programs in general follow certain ways in which they use the 
OS resources. 

 

 To capture normal interactions with the file system and the Windows registry, we 
propose an access activity model. 
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Access Activity Model 

 Each resource that appears in a collected trace receives an access label L, which is a set 
of access tokens: 
 L = { t1, t2, …, tn } 
Each token ti is a application-operation pair: 
 ti = <app, op> 

 

 Operations: 
– read, write, and execute for file-system directories, and 
– read and write for registry keys. 

 

 Resources are organized into a virtual resource hierarchy (e.g., a filesystem tree): 
– Generalization rules propagate labels to intermediate directories 
– Container directories, temporary directories automatically identified 
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A Simple Example Access Activity Model 
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Malware Detection Using the Access Activity Model 

 Build model from traces of benign programs: 
– Need many programs, executed in diverse environments, by different users 

 

 Then check the execution of any suspicious program against this access activity model: 
– Each node in the virtual resource hierarchy is a rule specifying which programs have 

what kind of access to that resource 

 

 Any violations are indicative of malware. 

 

 

 On our test set: 89% detection rate with 0% false positives. 
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Conclusions 

 It is crucial to have diverse and large datasets for both benign programs and malware. 

 Large datasets produce qualitatively different detection results over small datasets. 
– The accuracy of many classes of detection models is non-linear. 

 Analysis of large traces of benign programs indicates that common benign behavior 
exist (in how the OS resources are used). 
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